
UNCLASE IFIED - i': - r.-*
4r D,-e'I tnser d

M. ON PAGE &LAoD INoMIrC TIO

12.AU~ r&Ov ACESO O .RCFIN' AAO UBR
AD-A208 498

. ..- 5. TYPE Of REPORI PERIOD COVYRLD

Ada Compiler Validal.on Summary Report: NAVAL 19 July 1988 - 19 July 1989
UNDERWATER SYSTEMS COMMAND, ADAUYK43 (ALS/N Ada/L), Versi .PERFOR ING'bRG. RLPORi NUMBER
1.0, VAX 11/785 (host) to AN/UYK-43 (target), 880719S1.09 54

7. AU7hOtj) 3. COkTRAC1 OR &RAANI NUL4EER(s)

National Bureau of Standards,
C.aithersburg, Maryland, TISA

5. PLRFDRM1 ORrAIdZAT ION AND ADDRESS 10. PRDRAM ELEMENI. PRCJECI1. TASK
AREA & YORK UNIT NUR$BRS

National Bureau of Standards,

Gaithersburg, Maryland, USA

11. CONTROLLIIG OFFICE NAM[AND'APDRESS 9 REPORI DATE
Ada Joint Program Office 19 July 1988
United States Department of Defense 1. ,=ctK .t
Washington, DC 20301-3081 108 P. -

14. MONITORIN AGENCY SAME & ADDRESS(If different from Cont'roing Office) 15. SECURIly CLASS (of this report)L'NCLASSIED /
National Bureau of Standards,
Gaithersburg, Maryland, USA tSa. tUDt rON/DOw5RDlNA____ ___ ____ ___ ____ ___ ____ ___ ____ ___ ___N/A

16. DISTRIBUTION STATEMENI (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION SAII E' NI (of the abstraCt entered in Block 20 different from Report)

UNCLASSIFIED D T I
18. SUPPLEMEhIARY" NOTES] MAY 2 5 198V

12. KEYWDRDS (Continue on reverse se ,f ne essesr) A. irntf) by block number)

Ada Prograroming language, Ada Compiler Validation Sur!.ary Repcrt, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSI RAt T (Continue on reverse side if necessary nd e dentif) by block number)

ADAUYK43 (ALS/N AdaL), Version 1.0, NAVAL UNDERWATER SYSTEMS COMMAND, National Bureau
of Standards, VAX 11/785 under VAX/VMS, Version 4.5 (host) to AN/UYK-43 under Bare
machine (target), ACVC 1.09

9 5 9A 02-
DD 'u". 1473 EDITI0O OF I NOv 65 IS OBSOLEIE

I JAX 73 SN 0101-LF-o14-5601 UNCLASSIFIED
SECURIlY CLASS:FICAIIDN OF THIS PAGE (WhenDeta Entered)

"AVF ontrol Number: NBS88VUSN525 3

Ana Compiler
VAeI ic SNu r RES:

Certificate Nu~mer: 8807 19S1. 09154
NAVAL LN IAWT SYSTEMS

AMYK43 (ALS/N Ada/L), VESO 1.0
VAX 11/785 HOST and AN/UYK-43 TARE

Copletion of On-Site Testing:
19 July 1988

Prepared By:
Software Standards Validation Group

Institute for Computer Science- and Technology
National Bureau of Stardards

Building 225, Room A266
GaitherSurg, Maryland 20899 -a

Prepared For: Fo
Ada Joint Program Office rTIS CIRA& I

United States Department of Defense DTIC TAB
Washington, D.C. 20301-3081 Uaio.-,e4 U

By
Dibt 'b'tion I

Avx:toiL) y Codes

Dis t

Ada Campiler Validation Summary Report:

Cmpiler Name: ADAUYfK43 (AIS/N Ada/L), Version 1.0

Certificate Number: 880719S1.09154

Host: Target:
VAX 11/785 under AN/UYK-43
VAXV, under Bare machine
Version 4.5

Testing Completed 19 July 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation FaciliWy (
Dr. David K. Jefferson r
Chief, Information System
Engineering Division
National Bureau of Standards
Gaithers.rg, MD 20899

Validation Orgarzation
Dr. Jolhn F. Kramer
Institute for Defense Analyses
Ale>xadria, VA 22311

AdrJoint Program Office
Dr. John Sclomond
Director
Washington D.C. 20301

Ada Campiler Validation Summary Report:

Compiler Name: ADAUYK43 (ALS/N Ada/L), Version 1.0

Certificate Number: 880719S1.09154

Host: Target:
VAX 11/785 under AN/UYK-43
VAX/VMS, under Bare machine
Version 4.5

Testing Ccrpleted 19 July 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Faqili~yj
Dr. David K. Jeffersor!
Chief, Information Systems
Engineering Division
National Bureau of Standards
Gaithersbrg, MD 20899

Ada Validation oranzati

Ins'titute for Defense Analyse
Alexandria, VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Washington D.C. 20301

TABLE OF CCTnM

C 1 INiRODDCTIN

1.1 PURPOSE OF THIS VZDA ICN SU4RY REPI' 1-2
1.2 USE OF TIS VALIDAIC SMARY REPORT1-2
1.3 R2........1-3
1.4 DEFINMTON OF TERMS....... 1-3
1. 5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFURTICN

2. 1 CONFIGURATION TESTED 2-1
2.2 314'r0N~lf=TIf CARA.CER CS2-2

CHAPEP 3 TEST INFOI4QICN

3.1 TEST RES=...................... 3-1
3.2 SLD20M OF TEST RiSUIS BY ClASS 3-1
3.3 SUMARY OF TEST RESULIS BY CHAPIER.......... .3-2
3 .4 W..TH.RA. .TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, P SING, AND EVAIJATI01N MDIFICATIONS . . 3-4
3.7 ADDITIONAL TESTING fl FO1;&=CtN.............. .. 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method3-5
3.7.3 Test Site3-5

APPENDIX A CONFOMNCE SATEMEN

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHIRAWN TESTS

CAPrER 1

INRn D=CON

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of_ _t tM this cc:ipiler using the Ada Ccapiler
Validation Capability S XACVC) ------ 'An Ada coupiler mist be implemented
according to the Ada Standard, and any implementation-dependent features
mist conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
deperdencies-for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed

,-ring the process of testing this compiler are given in this report.

This information in this report is derived fron the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
ccapiler and evaluating the results. The purpose of validating is to
ensure conformity of the coapiler to the Ada Standard by testing that
the coapiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies beha,-ior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at corpile time, at link time, and during
execution.

i-i.

1.1 IVRF(SE OF THIS VALIDMCN SMM4A REPCMR

7his VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried cut for the following purposes:

To attempt to identify any language cnstructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify anry unsu~orted language contrcts
required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

Testing of this compiler was orxbucted National Bureau of Starards,
under the direction of the AVF according to policies and procedures
established by the Ada Validation Organization (AVO). On-site testing
was completed 19 July 1988, at Syscon Corporation, Washington, D.C.

1.2 USE OF T LS TION StM IYREPOKR

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the omputers, operating systems, and compiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Starad other than those presented. Copies
of this report are available to the public fran:

Ada Information Clearinghouse
Ada Joint Program Office
CXJSIRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group
Institute for Computer Sciences and Technology
National Bureau of Standards
Building 225, Room A266
Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFENE

1. Reference Manual for the Ada Prog tanquae,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Comiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada OxMiler Validation Capability Implementers' Guide.,
December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Aa compiler to
the Ada programming laruage.

Ada Cimentary An Ada Caumentary contains all information relevant to
the point addressed by a cment on the Ada Standard.
These cimments are given a unique identification number
having the form AI-ddddd.

Ada Stardard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting ompiler validations according to procedures
contained in the Ada -Czmiler Validation Procedures andGuidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

1-3

COmpiler A processor for the Ada language. In the cxntext of
this report, a ccupiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the ccupiler generates a result

that demonstrates nononformity to the Ada Standard.

Host The ccxputer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test ccupiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Language The language Maintenance Panel (IMP) is a cammittee
Maintenance established by the Ada Board to recommend

interpretations and Panel possible changes to the
ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a cmpiler generates the expected

result.

Target The ccmputer for which a conpiler generates code.

Test An Ada program that checks a compiler's conformity
regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet
its test objective, or contains illegal or erroneus use
of the language.

1. 5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
ccmpilation errors. Class L tests are expected to produce coi2lation
or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program coaponents in a Class A

1-4

test to check semantics. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada ccupiler.
A Class A test is passed if no errors are detected at cxupile time and
the program executes to produce a PASSED message.

Class B tests check that a cumpiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting ccupilaticn listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-<hecking and produce a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
excted.

Class D tests check the cmpilation and execution capacities of a
cumpiler. Since there are no capacity requirements placed on a cxmpiler

by the Ada Standard for same parameters-for example, the number of
identifiers permitted in a cuApilation or the number of units in a
library-a oxpiler may refuse to compile a Class D test and still be a
conforming cxmpiler. herefore, if a Class D test fails to corpile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test ccupiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is ampiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
same features addressed by Class E tests during copilation. Therefore,
a Class E test is passed by a ocmpiler if it is compiled successfully
and executes to produce a PASSED message, or if it is rejected by the
cmpiler for an allowable reason.

Class I tests check that incaulete or illegal Ada programs involving
multiple, separately coupiled units are detected and not allowed to
execute. Class L tests are cuapiled separately and execution is
attempted. A Class L test passes if it is rejected at link time-that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
refererm by the main program are elaborated.

Two library units, the package REPORT and the procedure CE[CK FIlE,
support the self-checking features of the executable tests. The package
REOR provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat sane oumpiler optimizations allowed by the Ada
Stardard that would ciramvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by same of the
Class C tests for chapter 14 of the Ada Standard. The operation of

1-5

RECar and CHC_FILE is checked by a set of executable tests. These
tests prcckme messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the tests in the ACVC follow oventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximun length of 72 characters, use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests cotain values
that require the test to be customized according to
implementaticn-specific values-for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A cmpiler must correctly process each of the tests in the suite and
distrate conformity to the Ada Stvndard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicabi lity of a test to an implementaticn
is considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determie to contain an
illegal language construct or an erroneous language construct is
withdrawn fram the ACVC and, therefore, is not used in testing a
campiler. The tests withdrawn at the time of validation are given in
Appendix D.

1-6

OCPrE= 2

CONFIIGRTO INFO4TO

2.1 CONFIGURATION

The candidate -Ampilation system for this validation was tested u-der
the following configuration:

Cmpiler: AIDUYK43 (AIS/N Ada/L), Version 1.0

ACVC Version: 1.9

Certificate Number: 880719S1.09154

Host Caputer:

Machine: VAX 11/785

operating System: VAX/VKS
Version 4.5

Memory Size: 16 Mb

Target Caqxrter:

Machine: AN/UYK-43

Operating System: Eare rachine

Memory Size: 16 Mb

Ommmnications Network: Portal-43

2-1

2.2 IMLME= N CHAACIEI%SrICS

One of the prposes of validatir compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
inpleiMtatios to differ. Class D and E tests specifically check for
such inplementation differencs. However, tests in other classes also
characterize an inplementation. ihe tests demonstrate the following
daracteristics:

- Capacities.

The ccmpiler correctly processes tests containing loop
statements nested to 65 levels, block statments nested to 65
levels, and recursive procures separately compiled as subunits
nested to 17 levels. It correctly processes a compilation
containing 723 variables in the same declarative part. (See
test D55A03A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

- Universal integer calculations.

An inplementation is alloied to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
inplementation processes 64 bit integer calculations. (See tests
D4A002A, D4A02B, D4AO04A, and D4AO04B.)

- Preefined types.

This implementation supports the additional predefined type
LONG INITEGE in the package STANDARD. (See
tests B86001B and B86001D.)

- Based literals.

An iplementation is all1owd to reject a based literal with a
value exceeding SYST .MAX INT during compilatiI, or it may
raise NUMERICRoR or c IuAmINERm3R during execution. This
inplementation raises NUMERIC_ER1MR during execution. (See
test E24101A.)

- Expression evaluation.

Apparently sare default iritialization expressions or record
carponents are evaluated before any value is checked to belong
to a rcmponent's subtype. (See test C32117A.)

2-2

Assigroents for subtypes are performed with the same precision
as the base type. (See test C35712B.)

This inplementation uses no extra bits for extra precision.
This inplementation uses all extra bits for extra range. (See
test C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUUERIC ERROR is raised when a literal operand in a
fixed-point cmparison or membership test is outside the range
of the base type. (See test C45252A.)

Aparently underflow is not gradual. (See tests C45524A..Z.)

- Rcrd.

The method used for rounding to integer is apparently round away
frcm zero (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away fri zero (See tests C46012A..Z.)

The method used for roundirg to integer in static universal real
expressions is apparently round toward zero (See test C4AO14A.)

- Array types.

An implementation is allowed to raise NUMERIC ERROR or
COKSTRA3M ER R for an array having a 'IfLEGT that exceeds
STANDARD. INTEGER' LAST and/or SYSTEM. MAXINT. For this
impleentat ion:

Declaration of an array type or subtype declaration with more
than SYS .MAXINT ccuponents raises NUMERIC_ERROR (See test
C36003A.)

NUMERIC ERROR is raised when an array type with INTEME'IAST + 2
ccmponets is declared.) (See test C36202A.)

NUMERIC ERROR is raised when an array type with SYSTEM.MAXINT +
2 cmponents is declared. (See test C36202B.)

A packed BOOLFAN array having a 'ILENGT exceeding ?Mu' LAST
raises no exception. (See test C52103X.)

A packed two-dimensional BOOLFAN array with more than
INTEGER'LAST ccmponents CONSTRAINT_ERROR when the length of a

2-3

m

dimension is calculated and exces flrh I' IAST. (See test
C52lo4Y.)

A null array with one dimension of length greater than
INIEGER'LAST may raise "ERIC EM or CttSIAfl ERR either
when declared or assigned. Alternatively, an inplentaticn may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception.
(See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CaRSIMAf1 ERROR is
raised when checkirq whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before C0tSRAflr_ E1 is raised
when decking whether the expression's subtype is cmpatible
with the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This implementation accepts such subtype
ndications. (See test E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

-Aggregates.

In the evaluation of a multi-dimensional. aggregate, all choices
appear to be evaluated before checking against the irdex type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bcnds.
(See test E43212B.)

Not all choices are evaluated before CONSAINT ERROR is raised
if a bound in a nonnull range of a nonnull aggregate does not
belong to an index subtype. (See test E43211B.)

Representation clauses.

An implemertation might legitimately place restrictions on

2-4

r resentation clauses used by s of the tests. If a
reprWesetation clause is not supported, then the implementation
must reject it.

En ration representation clauses containing rcroatiguous
values for enumeration types other than character and boolean
types are supported. (See tests C355021..J, C35502M..N, and
A39005F.)

Enumeration representation clauses containing noncontiguous
values for character types are supported. (See tests
C35507I..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, RE --> 1) are
not suported. (See tests C35508I..J and C35508M..N.)

length clauses with SIZE specifications for enumeration types
are supported. (See test A39005B.)

length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

length clauses with STORAGE-SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

Pragmas.

The pragma IN=flE is supported for procedures. The pragma
IN E is supported for functions. (See tests LA3004A, 1A3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

-Input/ouitput.

The package SEQUEIrIALIO cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECTIO cannot be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

2-5

The director, An)T, has determined (AI-00332) that every call to
OPEN and CREM must raise USE ERRR or NAME-ERROR if file
irprt/cutput is not -rported. This inplewentation exhibits
this behavior for DIRECT 10.

Overwriting to a sequential file tnuncates the file to last
element written. (See test CE2208B.)

An existing text file can be cpened in CUr FILE mode, can be
created in CUT FILE mode, and cannot be created in IN FILE mde.
(See test E31o2C.)

Generics.

Generic subprogram declarations and bodies can be ccupiled in
separate ccmpilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate ccapilaticns. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be cupiled in
separate cpilations. (See test CA3OIIA.)

2-6

CHAPTER 3

TEST IF TION

3.1 TEST RESULTS

Version 1.9 of the ACVC coaprises 3122 tests. When this campiler was
tests, 28 tests had been withdrawn because of test errors. The AVF
determined that 447 tests were inapplicable to this inplementation. All
inapplicable tests were processed during validation testing.
Modificatics to the code, processing, or gradin for 24 tests were
required to m sfully deunstrate the test objective. (See section
3.6.)

The AVF concludes that the testirg results demnstrate acceptable
confornity to the Ada Standard.

3.2 SUMARY OF TEST RESULTS BY CLASS

RESULT TEST CIASS TOTAL
A B C D E L

Passed 107 1048 1416 17 13 46 2647

Inapplicable 3 3 437 0 4 0 447

Withdrawn 3 2 21 0 2 0 28

TOMAL 113 1053 1874 17 19 46 3122

3-1

3.3 SIMR OF TEST RESULTS BY CHAPR

RZESUL CHPE TOTAL
2 -A 5 6 9 , 11 42 1

Passed 181 449 466 245 165 98 141 327 137 36 234 3 165 2647

Inapplicable 23 123 208 3 0 0 2 0 0 0 0 0 88 447

Withdrawn 2 14 3 0 1 1 2 0 0 0 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WI'I1RAWN TESTS

The following 28 tests were withdrawn fram ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35A03E C35A03R C37213H C37213J C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C E66001D A74106C C85018B C87BO4B CC1311B
BC3105A AD1A01A CE2401H CE3208A

See Appendix D for the reason that each of these tests was withxirawn.

3.5 INAPPLICABLE TESTS

Same tests do not apply to all coupilers because they make use of
features that a cmpiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 447
test were inapplicable for the reascn indicated:

C35508I..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for boolean types containing representational
values other than (FALSE => 0, TRUE => 1). These clauses are not
supported by this cumpiler.

3-2

C35702A uses SHUrFLAT which is not suported by this inplementaticn.

C35702B uses I=_FEAAT which is not supported by this implementation.

A39005G uses a record representation clause that is not supported by
this ccupiler.

The following (14) tests use SH(i_INTEGER, which is not supported by
this cxmpiler.

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D

C45231D requires a macro substitution for any predefined numeric types
other than , DM=, LCM _flt, FWAT, S FLOAT, ad
LCUNG FLOT. This cxpiler does not spport any such types.

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are not supported by this cmpiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-point
base types which are not supported by this cxmpiler.

B86001D requires a predefined numeric type other than those defined by
the Ada language in package STANDARD. There is no such type for this
implementation.

C86001F redefines package SYSTEM, but TEX-Io is made obsolete by
this new definition in this implementation and the test cannot be
execufted since the package REPOCR is dependent on the package TEXI0.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUEN=TIAL10 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected by
this cczpiler.

AE21OLH, EE240!D, and M2401G use instantiations of package DIECT IO
with unconstrained array types and record types having discriminants
without defaults. These instantiations are rejected by this ccapiler.

The following 79 tests are inapplicable because this implementation
supports only tape or terminal I0.

CE2102B CE2102F..G(2) CE2102I..K(3) CE2103B
CE2104C..D(2) CE2105B CE2106B CE2107A..I(9)
CE2108A..D(4) CE2109B CE2110B..C(2) CE2111B
CE2111D..E(2) CE2111G..H(2) CE2115A CE2204A..B(2)
CE2401A..C(3) CE2401E..F(2) CE2402A CE2404A
CE2405B CE2406A CE2407A CE2408A
CE2409A CE2410A CE2411A CE3104A
CE3109A M3111A..E(5) CE3112A. . B(2) C3114B

3-3

CE3115A CE3203A CE3402B CE3404A
CE3408B CE3411C CE3412C CE3413C
CE3602C..D(2) CE3605C CE3605E CE3704A
CE3804C CE3804I CE3805A..B(2) CE3806A
CE3806D CE3905A CE3906A

CE2102C uses a string which is illegal as an external file name for
SEQENTKLIO. No illegal file names exist.

CE3102B expects exception to be raised because of an illegal file name.
This implementatin does not restrict file names.

The following 327 tests require a floating-point accuracy that exceeds
the maximum of 6 digits supported by this implementation:

C24113C..Y (23 tests) C35705C..Y (23 tests)
C35706C..Y (23 tests) C35707C..Y (23 tests)
C35708C..Y (23 tests) C35802C..Z (24 tests)
C45241C..Y (23 tests) C45321C..Y (23 tests)
C45421C..Y (23 tests) C45521C..Z (24 tests)
C45524C..Z (24 tests) C45621C..Z (24 tests)
C45641C..Y (23 tests) C46012C..Z (24 tests)

3.6 TEST, PROCESSIG, AND EVALUATICN M1DIFICATIONS

It is expected that sae tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modificatiors are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Exauples of such
midifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub-tests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising ona exception instead of another).

C4AO12B raises NUMERIC ERRR rather than CONSTRAINTERROR. The test has

been evaluated and graded as PASSED.

modifications were required for 24 Class B tests.

The following Class B tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B2AO03A B2AO03B B2AO03C B33201C B33202C
B33203C B33301A B37106A B37201A B37301I
B37307B B38001C B38003A B38003B B38009A
B38009B B44001A B51001A B54AOlC B54AO1L
B95063A BC1O08A BC1201L BC3013A

3-4

3.7 ADDITIONAL TESTIN KMON

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the A YK43 (AIS/N Ada/L) was sukmitted to the AVF by the applicant
for review. Analysis of these results d---trated that the cxulpiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the AnYK43 (AIS/N Ada/L) using ACVC Version 1.9 was
cxnducted on-site by a validation team from the AVF. The configuration
consisted of a VAX 11/785 operating udr VAX/V S, Version 4.5 host and
a AN/UYK-43 target operating under Bare machine. The host and target
caputars were linked via Portal-43.

A magnetic tape containing all tests was taken on-site by the validation
team for processing. Tests that make use of implementation-specific
values were custumized on-site after the magnetic tape was loaded.
Tests requiring modifications during the prevalidatin testing were not
included in their modified form on the magnetic tape. The contents of
the magnetic tape were loaded directly onto the host caapiter.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the VAX 11/785, and all executable tests were run
on the AN/UYK-43. Object files were linked on the host conputer, and
executable images were transferred to the target cumputer via Portal-43.
Results were printed from the host computer, with results being
transferred to the host carpter via Portal-43.

The copiler was tested using cmmand scripts provided by Cuntrol Data
Corporation and reviewed by the validation team. The ccmpiler was
tested using all default option settings without exception.

Tests were copiled, linked, and executed (as appropriate) using a
single host ccmputer and a single target ccnputer. Test output,
compilation listings, and jcb logs were captured on magnetic tape and
archived at the AVF. The listings exmined on-site by the validation
team were also archived.

3.7.3 Test Site

Testing was coxducted at Syscn Corporation, Washington, D.C., and was
oampleted on 19 July 1988.

3-5

APPEDDC A

A-i

DECLARATION OF CONFORMANCE

Compiler Implementor: Control Data Corporation, Software Programs Division
AdaR Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: ADAUYK43 (ALS/N Ada/L) Version: 0.5
Host Architecture ISA: Digital VAX OS&VER 0: VMS 4.5
Target Architecture ISA: AN/UYK-43 OS&VER S: N/A

Implementor's Declaration

I, the undersigned, representing Control Data Corporation, Software Programs
Division, have implemented no deliberate extensions to the Ada Language
Standard ANSI/MIL-STD-1815A in the compiler listed in this declaration. I
declare that Naval Sea Systems Command, Department of the Navy, is the owner of
record of the Ada Language compiler listed above and, as such, is responsible
for maintaining said compiler in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for the Ada language compiler listed in this
decaration shall be made only in the owner's corporate name.

_____z____ Date: zA ~/'
D. L. Witt, Program Manager I

Owner's Declaration:

I, the undersigned, representing Naval Sea Systems Command, Department of the
Navy, take full responsibility for implementation and maintenance of the Ada
compiler listed above, and agree to the public disclosure of the final
Validation Summary Report. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare that
all of the Ada language compilers listed, and their host/target performance are
in~ i ~ guage Standard ANSI IL-STD-1815A.

tJ Date: I / "i -

RAda is a registered trademark of the United States Government
(Ada Joint Program Office).

D-1

APPEDIX B

APPDIX F OF TE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
cauventicrw as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementati-deperdent daracteristics of the VAX 11/785, Version 4.5,
we described in the following sections which discuss topics in Appendix
F of the Ada Standard. Implementation- specific portions of the package
STAND are also included in this appendix.

pacage STADRD is

type INEER is rage -2_147483647 .. 2147483647

type LCGINMIBE is range -9223_372_036_854_75_807
9223372036854775807;

type FLOAT is digits 6 range -(16#0.FFFFFF#E63)..
(16#0.FFFFFF#E63);

type DURATION is delta 2.0**(-14) range -131_071.0
131 071.0;

end STANDARD;

B-I

APPENDIX F

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

IMPLEMENTATIOh-DEFINED PRAGMAS

pragma DEBUG;

DEBUG Applies to the entire compilation unit in which the pragma appears.

This pragma enables one or more debugging features. These
debugging Leatures shall be sufficient to support the requirements
of the Embedded Target Debugger and the Run-Time Debugger.

pragma EXECUTIVE [(arg)];

EXECUTIVE Applies to the library unit in which the pragma appears, and to
any corresponding secondary units.

This pragma shall provide user-written Ada programs and RTE
functions access to the machine-dependent facilities of the
embedded target computer from the Ada language implemented by the
Ada/L Code Generatcr. Program units compiled with the EXECUTIVE
pragma shall have:

Direct access to all the services of the Run-Time Executive,
Run-Time Support Library, and Run-Time Loader that are
available to the RTE Functions (i.e., all interfaces
specified in the Ada/L Interface Specification). The only
access to the Run-time Executive is through the RTEXECGETEWAY;

The ability to execute the "privileged" instructions of the
embedded target computer (these instructions shall be
checked for and flagged as a WARNING if they occur in
program units compiled with the NOEXECUTIVE option or
without the EXECUTIVE pragma);

The ability to specify address clauses for hardware
interrupts of the embedded target computers (these address
clauses shall be checked for and flagged as a WARNING if
they occur in program units compiled with the NOEXECUTIVE
option or without the EXECUTIVE pragma);

F-1

APPENDIX F OF TEE ADA LRM FOR THE ADAUYK43 TOOLSET.

The ability to execute in the 'executive* state(s) of the

embedded tarqet computer_(program units compiled with the
NO EXECUTIVE option or without the EXECUTIVE pragma shall be
limited to the "task" state);

The ability to call and be called by other program units
compiled with the NOEXECUTIVE option or without the
EXECUTIVE pragma (the state will be changed as appropriate);

Continued use of the STATIC, UNMAPPED, DEBUG, and MEASURE
pragmas.

The EXECUTIVE pragma has an optional argument which is PRIVILEGE.
The use of the PRIVILEGE argument directs the compiler to generate
privileged instructions where possible.

pragma MEASURE (extraction_ set, farg,...V);

MEASURE No scope is associated with MEASURE.

This pragma enables one or more performance measurement features,
including the specification of objects in extraction sets. These
performance measurement features shall be sufficient to support
the requirements of the Run-Time Performance Measurement Aids.

pragma STATIC;

STATIC Applies to the library unit in which the pragma
appears, and to any corresponding secondary units.

The pragma STATIC is only allowed immediately after the
declaration of a task body containing an immediate interrupt
entry. The effect of this pragma will be to allow generation of
nonreentrant and nonrecursive code in a compilation unit, and to
allow static allocation of all data in a compilation unit. This
pragma shall be used to alica for procedures within immediate
(fast) interrupt entries. The effect will be for the compiler to
generate nonreentrant code for the affected procedure bodies. If
a STATIC procedure is called recursively, the program is erroneous.

pragma TITLE (arg);

TITLE Applies to the compilation unit in which the pragma appears.

This is a listing control pragma. It takes a single argument of
type string. The string specified will appear on the second line
of each page of every listing produced for the compilation
unit. At most one such pragma may appear for any compilation unit,
and it must be the first lexical unit in the compilation unit
(excluding comments).

pragma TRIVIALENTRY (NAME: entrysimplename);

TRIVIALENTRY Applies only to the entry named in its argument.

F-2

APPENDIX F OF THE ADA LRM FOR THE ADAUYR43 TOOLSET.

This pragma is only allowed within a task specification after an
entry declaration and identifies a Trivial_Entry to the system.

pragma UNMAPPED (arg [arg,...]);

UNMAPPED Applies to package data in the compilation in which
the pragma appears.

The effect of this pragma is for unmapped (i.e., not consistently
mapped) allocation of package data in a compilation unit. The
arguments of this package are access types and variables to be
unmapped. The compiler shall be free to generate a compilation
unit with package data larger than the maximum allowable phase
size, but not larger than the physical memory.
Information about phase sizes and memory mapping may be found in
the Run-Time Environment Handbook.

F-3

APPENDIX F OF THE ADA LRJM FOR THE ADAUYK43 TOOLSET.

LANGUAGE-DEFINED PRAGMAS

This paragraph specifies implementation specific changes to those
pragmas described in Appendix B of ANSI/MIL-STD-1815A.

pragma CONTROLLED (arg);
CONTROLLED Applies only to the access type names in its argument.

No Change.

pragma ELABORATE (arg [arg,...]);

ELABORATE Applies to the entire compilation unit in which the
pragma appears.

No Change.

pragma INLINE (arg (arg,...]);

INLINE Applies only to subprogram names in its arguments.
If the argument is an overloaded subprogram name,
the INLINE pragma applies to all definitions of that
subprogram name which appear in the same declarative
part as the INLINE pragma.

Subprograms specified as an argument to an INLINE pragma, and
which are directly recursive, are not expanded in-line at the

point of the recursive invocation. Such calls use normal Ada
subprogram calling semantics.

pragma INTERFACE (arg, arg);

INTERFACE Applies to all invocations of the named imported
subprogram.

The first argument specifies the language and type of interface to
be used in calls used to the externally supplied subprogram,
specified by the second argument. The allowed values for the
first argument (language name) are MACRONORMAL and MACROQUICK.
MACRONORMAL indicates that parameters will be passed on the stack
and the calling conventions used for normal Ada subprogram calls
(see Section 3.4.14.2 of Ada/L_IntfSpec]) will apply.
MACROQUICK is used in RTLIB routines to indicate that parameters
are passed in registers.

The user must ensure that an assembly-language body container will
exist in the library before linking.

pragma LIST (arg);

LIST Applies from the point of its appearance until the
next LIST pragma in the source or included text, or
if none, the end of the compilation unit.

F-4

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

No Change.

pragma EMORY SIZE (arg)

M EMORYSIZE Applies to the entire Program Library in which the

pragma appears.

This pragma must appear at the start of the first compilation when
creating a program library. If it appears elsewhere, a diagnostic
of severity WARNING is generated and the pragma has no effect.

pragma OPTIMIZE (arg);

OPTIMIZE Applies to the entire compilation unit in which the
pragma appears.

The argument is either TIME or SPACE. The default is SPACE. This
pragma will be effective only when the OPTIMIZE option has been
given to the compiler, as described in Appendix 20 of ALS/NSpec,

pragma PACK (arg);

PACK Applies only to the array or record named as the
argument.

No Change.

pragma PAGE

PAGE No scope is associated with PAGE.

No Change.

pragma PRIORITY (arg);

PRIORITY Applies to the task Lpecification in which it
appears, or to the environment task if it appears in
the main subprogram.

The argument is an integer static expression in the range 0..15,
where 0 is the lowest user-specifiable task priority and 15 is the
highest. If the value of the argument is out of range, the pragma
will have no effect other than to generate a WARNING diagnostic.

A value of zero will be used if priority is not defined. The
pragma will have no effect when not specified in a task (type)
specification or the outermost declarative part of a subprogram,
it will have no effect unless that subprogram is designated as the
main subprogram at link time.

pragma SHARED (arg);

SHARED Applies to the scope of the scalar or access
variable named by the argument.

No change.

F-5
6)

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

pragma STORAGE-UNIT (arg);

STORAGEUNIT Applies to the entire Program Library in which the
pragma appears.

This pragma must appear at the start of the first compilation when
creating a program library. If it appears elsewhere, a diagnostic
of severity WARNING is generated and the pragma has no effect.

pragma SUPPRESS (arg[,arg]);

This pragma is unchanged with the following exceptions:

Suppression of OVERFLOW CHECK applies only to integer operations;
and a SUPPRESS pragma has effect only within the compilation unit
in which it appears except that suppression of ELABORATIONCHECK
applied at the declaration of a subprogram or task unit applies to
all calls or activations.

pragma SYSTEMNAME (arg);

This pragma must appear at the start of the first compilation when
creating a program library. If it appears elsewhere, a diagnostic
of severity WARNING is generated and the pragma has no effect.
The only allowable value for the argument is the enumeration
literal AN/UYK-43. For other values a WARNING diagnostic is
generated.

F-6

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

IMPLEMENTATION-DEFINED ATTRIBUTES

There are two implementation-defined attributes in addition to
the predefined attributes found in Appendix A of ANSI/MIL-STD-1815A.
These are defined below.

pIPTI-ID

Yields a value of type intentry.ptientry. The prefix of this attribute
identifies a fully qualified interrupt entry. This attribute is used
to pass an entry name to a procedure.

p|PHYSICALADDRESS For a prefix p that denotes a data object.

Yields a value of type system.physical address, which corresponds to
the absolute address in physical memory of the object named by p. This
attribute is used to support operations associated with the pragma
UNMAPPED.

The following definitions augment the language-required
definitions of the predefined attributes found in Appendix A of
ANSI/MIL-STDO1815A.

T'MACHINEROUNDS is false.
TIMACHINERADIX is 16.
T'MACHINEMANTISSA is 6.
T'MACHINEEMAX is 63.
T'MACHINE EMIN is -64.
T'MACHINEOVERFLOWS is true.

F-7

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

The package SYSTEM is as follows:

-- c 1987 United States Government as represented by
-- the Secretary of Navy. ALL RIGHTS RESERVED.

--m (The U.S. Government possesses the unlimited rights
-- throughout the world for Government purposes to
-- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
--- computer firmware contained herein; and to authorize
-- others to do so.)

-- REVISION HISTORY:

-- 23 FEB 1988 DET
-- ISTR 246 :

-- 0 Added definitions for __CHK type exceptions that were
-- present in the ADAVAX system but missing from ADA/L
-- 25 JAN 1988 ROS
-- ISCP 236 :

-- 0 Added interrupt address constants and FUNCTION addressof.
-- 10 Mar 1987 TCJ

-- Coded from PDL

PACKAGE SYSTEM IS

-- JUSTIFICATION:

SYSTEM contains the definitions of certain
-- configuration-dependent characteristics (see Section 13.7 of
-- I (ANSI/MIL-STD-1815A]) of Ada/L(43).

-- (SYSTEM also provides system dependent logical routines

-- and conversion routines.

-- Assumptions:

-- I SYSTEM is targeted for Ada/L(43).

-- I TYPES and DATA:

-- I See below.

TYPE name IS (anuyk43);
-- only one compatible system name.

system-name : CONSTANT system.name := system.anuyk43;
-- name of current system.

storage-unit : CONSTANT := 32;
-- word-oriented system (not configurable)

memorysize : CONSTANT := 1048_576;
-- 2**20
-- virtual memory size (not configurable).

F-8

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

TYPE address IS RANGE 0..system.memory-size - 1;
-- virtual address.

-- FOR address'SIZE USE 32;
-- virtual address is a 32-bit quantity.

null addr : CONSTANT address := 0;
-- Indicates a NULL address.

-- Address clause (interrupt) addresses

Intercomputer_Timeoutaddress : CONSTANT address 11;
ConfidenceTestFaultaddress : CONSTANT address 12;
DataPatternBreakpointaddress CONSTANT address 20;
OperandBreakpcintMatchaddress CONSTANT address 21;
DCUStatusInterruptaddress : CONSTANT address 23;
InstructionBreakpointMatchaddress : CONSTANT

address := 27;
RPD Underflowaddress : CONSTANT address := 28;
IOC ConfidenceTestFaultaddress : CONSTANT

address := 37;
IOCBreakpointMatchaddress : CONSTANT address 38;
-- Pseudo-Interrupts
System Damage address CONSTANT address 41;

Program Damage address CONSTANT address 42;
-- I/O Interrupts
-- User should program
-- FOR entry-name USE AT system.address of(
-- interrupt=>interruptname, forchannel=>

-- channel-number);
-- e.g.

-- USE system;

-- FOR el USE AT addressof(ioc cp interrupt,

-- for channel=>5);

-- (Declaration of FUNCTION address-of is found below)

IOCCP Interrupt : CONSTANT integer := 1000;

IOCExternalInterruptMonitor CONSTANT integer 1001;
IOCExternalFunctionMonitor CONSTANT integer 1002;

IOC OutputData_Monitor CONSTANT integer 1003;
IOC Input Data-Monitor CONSTANT integer 1004;
SUBTYPE 10_interrupts IS

INTEGER RANGE IOC CP Interrupt..IOC_InputData Monitor;
SUBTYPE channel-numbers IS INTEGER RANGE 0..63;

physicalmemorysize : CONSTANT := 2**31;
-- maximum physical memory size

-- (not configurable)

TYPE physical_address IS
RANGE 0..system.physical_memorysize - 1
-- absolute address.

F-9

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

nullphysaddr : CONSTANT physical_address := 0;
-- Indicates a NULL physical address.

TYPE word IS NEW INTEGER;

-- objects of this type occupy one target computer
-- word *32 bits on the AN/UYK-43).
-- UNCHECKEDCONVERSION must be used to interpret
-- the value for an object of this type from Ada.

min int : CONSTANT := -((2"'63)-1);
-- most negative integer.

maxint : CONSTANT := (2"'63)-l;
-- most positive integer.

max digits : CONSTANT := 15;
-- most decimal digits in floating point constraint.

max mantissa : CONSTANT := 31;
-- most binary digits for fixed point subtype.

fine-delta : CONSTANT
2#0.0000_0000 0000_0000_0000_0000_0000_001#;

-- 2"*(-31) is minimum fixed point constraint.

tick : CONSTANT := 4.8828125e-05;
-- 1/20480 seconds is the basic clock period.

SUBTYPE priority IS integer RANGE 0..15;
-- task priority, lowest = default = 0.

TYPE entrykind IS (normal, immediate);
-- enumeration type for use with PRAGMA

-- INTERRUPTHANDLERTASK.

-- The following exceptions are provided as a "convention"
-- whereby the Ada program can be compiled with all

-- implicit checks suppressed (i.e. PRAGMA SUPPRESS or
-- equivalent) and explicit checks included as necessary
-- that RAISE the appropriate exception when required.
-- The explicitly raised execption is either handled or
-- the Ada program terminates.

ACCESSCHECK : EXCEPTION;
DISCRIMINANTCHECK : EXCEPTION:
INDEX-CHECK : EXCEPTION;
LENGTHCHECK : EXCEPTION;
RANGE-CHECK : EXCEPTION;
DIVISION-CHECK : EXCEPTION;
OVERFLOW-CHECK : EXCEPTION;
ELABORATIONCHECK : EXCEPTION;
STORAGE-CHECK : EXCEPTION;

F-10

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- implementation-defined exceptions.

UNRESOLVED_REFERENCE : EXCEPTION;
SYSTEM ERROR : EXCEPTION;
CAPACITYERROR : EXCEPTION;
-- The exception CAPACITYERROR is raised by the RTExec
-- when Pre-RunTime specified resouce limits are exceeded.

-- I CREATED TASKS:

-- I None.

-- I SUBPROGRAMS AND TASKS:

FUNCTION ADDRESSOF
-- returns the system.address of the given Class III interrupt
-- for the specified channel

(interrupt : IN 10 interrupts;
-- The name of the interrupt,

for-channel IN channel-numbers
-- The channel number.

RETURN address;
-- The address to be used in the representation
-- (address) clause.

PRAGMA INTERFACE (MACRONORMAL,ADDRESSOF);

FUNCTION "AND"
-- returns the logical 32 bit 'AND' between two integers.

(operand_a : IN integer;
-- The first operand.

operand_b : IN integer
-- The second operand

RETURN integer;
-- The results.

PRAGMA INTERFACE (MACRO_NORMAL, "AND");

FUNCTION "NOT"
-- returns the logical 32 bit 'NOT' of an integer.

(operand_a : IN integer
-- The first operand.

RETURN integer;
-- The results.

PRAGMA INTERFACE (MACRONORMAL, "NOT");

F-Il

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

FUNCTION "OR"
-- returns the logical 32 bit 'OR' between two integers.

(operand a : IN integer;
-- The first operand.

operandb : IN integer
-- The second operand

RETURN integer;
-- The results.

PRAGMA INTERFACE (MACRONORMAL, "OR");

END SYSTEM;

F-12

APPENDIX F OF THE ADA LRM FOR TEE ADAUYR43 TOOLSET.

REPRESENTATION AND DECLARATION RESTRICTIONS

Representation specifications are described in Section 13 of
ANSI/MIL-STD-1815A. Declarations are described in Section 3 of
ANSI/MIL-STD-1815A.

In the following specifications, the capitalized word SIZE
indicates the number of bits used to represent an object of the type
under discussion. The upper case symbols D, L, R, correspond to those
discussed in Section 3.5.9 of ANSI/MIL-STD-1815A.

Enumeration Types

In the absence of a representation specification for an
enumeration type "t", the internal representation of t'FIRST is 0. The
default size for a stand-alone object of enumeration type "t" is 32, so
the internal representations of t'FIRST and t°LAST both fall within the
range -(2"*15 - 1) .. 2**15 - 1.

Length specifications of the form

FOR t'SIZE USE n;

and/or enumeration representations of the form

FOR t USE aggregate;

are permitted for n in 2..32, provided the representations and the SIZE
conform to the relationship specified above, or else for n in l..32,
provided that the internal representation of t'FIRST >= 0 and the
representation of t'LAST <= 2**(t'SIZE) - 1.

For components of enumeration types within packed composite
objects, the smaller of the default stand-alone SIZE or the SIZE length
specification is used.

Enumeration representations for type, derived from the predefined
type standard.boclean will not be accepted, but length
specifications will be accepted.

Arrays and Records

A length specification of the form

FOR t'size USE n;

may cause arrays and records to be packed, if required, to accommodate
the length specification. If the size specified is not large enough to
contain any value of the type, a diagnostic message of severity ERROR

is generated.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that the storage space requirements
are minimized at the possible expense of data access time and code

F-13

APPENDIX F OF TEE ADA LRM FOR THE ADAUYK43 TOOLSET.

space.

A record type representation specification may be used to
describe the allocation of components in a record. Bits are numbered
0..31 from the right. Bit 32 starts at the right of the next higher
numbered word. Each location specification must allow at least n bits
of range, where n is large enough to hold any value of the subtype of
the component being allocated. Otherwise, a diagnostic message of
severity EROR is generated. Components that are arrays, records,
tasks, or access variables may not be allocated to specified
locations. If a specification of this form is entered, a diagnostic
message of severity ERROR is generated.

The alignment clause of the form

AT MOD n

may only specify alignments of 1 or 2 (corresponding to word or
doubleword alignment, respectively).

If it is determinable at compile time that the SIZE of a record
or array type or subtype is outside the range of standard.integer,
a diagnostic of severity WARNING is cenerated. Declaration cf such a
type or subtype would raise NUMERICERROR when elaborated.

Address Clauses

Refer to Section 13.5 of ANSI/MIL-STD-1815A for a description
of address clauses. All rules and restrictions described there apply.
In addition, the following restrictions apply.

An address clause designates a single task entry only. The
appearance of a data objec., subprogram, package, or task unit name in
an address clause is not allowed, and will result in tne generation cf
a diacnostic of severity EROR.

An address clause may designate a sincle task entry. Such an
address clause is a!Lcwed only within a task specifizaticn compiled
with the EXECUTIVE comoiler cntizn. The meaningful vaLues of the
simple_expression are the allowable interrupt entry addresses as
defined in Appendix G of RTOSPPS. The use of other values will
result in the raising of a PROGRAXERROR exception upon creation of the
task.

If more than one task entry is equated to the same interrupt
entry address, the most recently executed interrupt entry registration
permanently overrides any previous registrations.

At most one address clause is allowed for a single task entry.
Specification of more than one interrupt address for a task entry is
erroneous.

F-14

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

SYSTEM GENERATED NAMES

There are no system generated names.

ADDRESS CLAUSES

Refer to Section 13.5 of ANSI/MIL-STD-1815A for a description
of address clauses. All rules and restrictions described there apply.
In addition, the following restrictions apply.

An address clause designates a single task entry only. The
appearance of a data object, subprogram, package, or task unit name in
an address clause is not allowed, and will result in the generation of
a diagnostic of severity ERROR.

An address clause may designate a single task entry. Such an
address clause is allowed only within a task specification compiled
with the EXECUTIVE compiler option. The meaningful values of the
simpleexpression are the allowable interrupt entry addresses as
defined in Appendix G of RTOSPPS. The use of other values will
result in the raising of a PROGRAMERROR exception upon creation of the
task.

If more than one task entry is equated to the same interrupt
entry address, the most recently executed interrupt entry registration
permanently overrides any previous registrations.

At most one address clause is allowed for a single task entry.
Specification of more than one interrupt address for a task entry is
erroneous.

UNCHECKEDCONVERSION

Refer to Section 13.10.2 of ANSI/MIL-STD-1815A for a
description of UNCHECKEDCONVERSION. It is erroneous if the
UserWrittenAdaProgram performs UNCHECKEDCONVERSION when the scurce
and target objects have different sizes.

F-15

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

INPUT/OUTPUT

I/O in Ada/L is performed solely on external files. No allowance is
provided in the I/O subsystem for memory resident files (i.e., files which do
not reside on a peripheral device). This is true even in the case of temporary
files. With the external files residing on the peripheral devices, Ada/L
makes the further restriction that only one file may be open on an individual
RD358 tape unit at a time.

The naming conventions for external files in Ada/L are of particular
importance to the user. All of the system-dependent information needed by the
I/O subsystem about an external file is contained in the file name. External
files may be named using one of three file naming conventions: standard,
temporary, and user-derived.

Standard File Names:

The standard external file naming convention used in Ada/L identifies the
specific location of the external file in terms of the physical device on which

it is stored. For this reason, the user should be aware of the configuration of
the peripheral devices on the AN/UYK-43 at a particular user site.

Standard file names may be six to twenty characters long; however, the first six
characters follow a predefined format. The first and second characters must be
either "DK", "MT", or "TT", designating an AN/UYH-3(V) Recorder-Reproducer
Set Magnetic Disk, the RD-358 Magnetic Tape Subsystem, or the AN/USQ-69
Data Terminal Set, respectively.

The third and fourth characters specify the channel on which the peripheral
device is connected. Since there are sixty-four channels on the
AN/UYK-43, the values for the third and fourth positions must lie in the
range "00" to "63".

The range of values for the fifth position in the external file name (the unit
number) depends upon the device specified by the characters in the first and
second positions of the external file name. If the specified peripheral dev:ce
is the AN/UYH-3 magnetic disk drive, then the character in the fifth pcsiticn
must be one of the characters "0", "1", "2", or "3". This value determines
which of the four disk units available on the AN/UYH-3 is to be
accessed. If the specified peripheral device is the RD-358 magnetic tape
drive, the character in the fifth position must be one of the characters "0",
a", "2", or "3". This value determines which of the four tape units
available on the RD-358 is to be accessed. If the specified peripheral
device is the AN/USQ-69 militarized display terminal, the character in
the fifth position must be a "0". This is the only allowable value for
the unit number when the AN/USQ-69 is connected to a paralled I/O channel.
This is because the AN/USQ-69 may have only one unit on a parallel channel.

The colon, "':", is the only character allowed in the sixth position. If any
character other than the colon is in this position, the file name will be
considered non-standard and the file will reside on the default device defined
during the elaboration of CONFIGUREIO.

Positions seven through twenty are optional to the user-written Ada program and

may be used as desired. These positions may contain any printable character the

F-16

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

user chooses in order to make the file name mo:e intelligible. Embedded blanks,

however, are not allowed.

The location of an external file on a peripheral device is thus a function of

the first six characters of the file name regardless of the characters that

might follow. For example, if the external file "MTOOO:OldData" has been

created and not subsequently closed, an attempt to create the external file

"MTOOO:NewData" will cause the exception DEVICEERROR (rather than

NAME ERROR or USEERROR) to be raised because the peripheral device on

channel "00" and cartridge "0" is already in use.

The user is advised that any file name beginning with "xxxxx:" (where x

denotes any printable character) is assumed to be a standard external

file name. If this external file name does not conform to the Ada/L

standard file naming conventions, the exception NAMEERROR will be raised.

Temporary File Names:

Section 14.2.1 of [ANSI/MIL-STD-1815A) defines a temporary file to be an

external file that is not accessible after completion of the main subprogram.

If the null string is supplied for the external file name, then the external

file is considered temporary. In this case, the high level I/O packages

internally create an external file name to be used by the lower level I/O

packages. The internal naming scheme used by the I/O subsystem is a function of

the type of file to be created (text, direct or sequential), the temporary

nature of the external file, and the number of requests made thus far for

creating temporary external files of the given type. This scheme is consistent

with the requirement specified in (ANSI /MIL-STD-1815AI that all external file

names be unique.

The first three characters of the file name are "TEX",

"DIR", or "SEQ". The next six characters are " TEMP_". The remaining

characters are the image of an integer which denotes the number of temporary

files of the given type successfully created. Ther@ are two types of temporary

files; one is used by SEQUENTIAL_10 and DIRECT = an the other is used

by TEXT_IO.

For instance, the temporary external file name "TEXTEMP_10"
would be the name of the tenth temporary external file successfully created

by the user-written Ada program through calls to TEXT_10.

User-Derived File Names:

A random string containing a sequence of characters of length one to twenty may
also be used to name an external file. External files with names of this nature

are considered to be permanent external files. The user is cautioned to refrain
from using names which conform to the scheme used by the I/O subsystem to name

temporary external files (see subsection (b) above).

Ada/L restricts the creation of files to those of mode "outfile."

In the case of the AN/USQ-69, where one file of mode "in file" and one file
of mode "outfile" may be open on the same terminal, the user must open two

separate files in order to read from and write to the terminal.

F-17

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

If the peripheral device is an RD-358, the file is assumed to be an
Ada/L compatible file, including the file information header block
unless a foreign tape format is specified by a form parameter with a
NOHEAD option. if the utiderlying I/O system is expecting an Ada/L

compatible header record and none is found, the tape is rewound and the
exception DATAERROR is raised. If the peripheral device is an
RD-358 and the tape format is foreign, the file must be opened with
the form parameter specifying the NOHEAD option. This suppresses the

check for Ada/L compatibility and assumes that no header record exists

for the file.

Failing to close a file on a terminal has no adverse effects.

If the user fails to close a file on the magnetic tape prior to the

end of the main subprogram, the tape may not be positioned correctly for

future tape operations.

Issuing a CREATE or OPEN with the form option NOREWIND after loading

the tape and manually placing the tape in an arbitrary position will also

give unpredictable results.

Failure to close a file on a magnetic disk prior to the end of the

main subprogram may result in loss of date. Since the disk I/O is

buffered, data may reside in local buffers which could be lost if the

buffers are not flushed prior to the completion of the main

subprogram.

I/O Arguments:

The I/O arguments allow a user access to the features of the

RD-358/UYK tape drive. Specifically the arguments control the

positioning and formatting of the tape prior to I/O operations to

the tape. This section describes the appropriate use of these I/O

arguments and the consequences of inappropriate use.

The RD-358/UYK tape drive has been implemented to allow several

different formatting/positioning options. The user selects the

arguments for a particular file and conveys them to tne 1/O System

via the FORM parameter.

The FORM parameter is a string literal of which a maximum of

twenty characters is processed. If the supplied form string is longer

than the maximum allowed form string (20 characters), the exception

USERERROR will be raised. The string literal is interpreted

as a sequence of arguments. If the user wishes to utilize the

default arguments, a FORM parameter need not be supplied.

Only the first two arguments within the string are processed.

All following characters or arguments will cause the USEERROR to be

raised. The arguments are not case sensitive. The arguments must be

separated by at least one delimiter. A legal delimiter consists of a

comma or blank. Extra delimiters are ignored. Of the recognized

arguments, at most one formatting and one positioning arguments are

allowed. If conflicting arguments are used, the exception USEERROR

F-18

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

will be raised.

The two procedures which use the form parameter are CREATE
and OPEN. For the CREATE procedure any of the possible arguments
may be applied. The APPEND argument (discussed below) is not legal
for the OPEN procedure; if used with an OPEN procedure a USEERROR
exception will be raised.

Positioning arguments allow control of tape before its use.
The following positioning arguments are available to the user:

a. REWIND - specifies that a rewind will be performed prior
to the requested operation.

b. NOREWIND - specifies that the tape remains positioned as is.

c. APPEND - specifies that the tape be positioned at the
logical end of tape (LEOT) prior to the requested
operation. The LEOT is denoted by two consecutive
tapemarks.

The formatting argument specifies information about tape format.
If a formatting argument is not supplied, the file is assumed to contain
a format header record determined by the ALS/N I/O system.

The following formatting argument is available to the user:

a. NOHEAD - specifies that the designated file has no header
record. This argument allows the reading and
writing of tapes used on computer systems using

different header formats.

Although I/O arguments affect the CREATE and OPEN procedures in a

similiar manner, each procedure has unique situations that it handles.
These distinctive characteristics of the CREATE procedures are as follows:

a. If a file is created with a REWIND argument, the tape
rewinds to the beginning of tape before the CREATE operation
takes place. No information following the current file will
be accessible to the user.

b. If a file is created with the NOREWIND argument, the file
is created with the tape positioned as is. No information

following the current file will be accessible to the user.
If a file is created with no positioning argument, the

default is NOREWIND.

c. If a file is created with argument APPEND, the tape is
forwarded to the LEOT before the CREATE operation takes

place.

d. If an attempt to create a file with argument APPEND on a
blank tape is made, a DEVICE ERROR exception will be raised.

e. If a file is created with argument NOHEAD, the writing of

a header record to tape is suppressed. All future references

F-19

APPENDIX F OF THE ADA LRN FOR THE ADAUYK43 TOOLSET.

to the file must be done via positioning of the tape, not
by name.

f. Use of the positioning argument may allow multiple files
with the same name to be created on the tape. Invoking the
CREATE procedure will not cause a search for an existing file
of the same name.

A description of the OPEN procedure's distinctive characteristics are
as follows:

a. If a file is opened with mode outfile, the user is allowed
to write to the file. But, all data in the current file and
all data in succeeding files is lost if there is an actual write
to the opened file (i.e. the data is not lost as a result of
the OPEN request but as a result of a WRITE request). The
LEOT is written after each write to tape, thus causing all
data following the LEOT tape mark to be inaccessible.

b. If a file is opened with argument REWIND, and the file
contains a header record, the tape is rewound to the beginning
of tape before searching for the specified file. The first
file with the specified name is opened. If a file is opened
with no positioning argument, the default is REWIND.

c. If a file is opened with argument NOREWIND and the file contains

a header record, the tape remains positioned as is. The
searching for the specified file begins from the current position
of the tape. The first file with the specified name is opened.
If no file of the specified name exists after the current
position, the exception NAME-ERROR will be raised.

d. If a file is opened with arguments REWIND and NOHEAD, the
tape is rewound to the beginning of tape and the first file
on the tape is opened.

e. If a file is opened with argument NOREWIND and NOHEAD, the file
at which the tape is currently positioned is opened.

f. If a file is opened with the default arguments (i.e. the
file contains a header record and is rewound to the beginnng
of tape) the first file with the specified name is opened.

Other distinctive characteristics of the Tape I/O subsystem are
as follows:

a. If NOHEAD argument is specified it is assumed that NONE of
the files on the tape has a file header. By default
if the NOHEAD argument has not been specified all files on

the tape are assumed to contain file headers. If a mixture
of files with headers and without headers occur on the same
tape, results are unpredictable.

b. The CLOSE procedure positions the tape at the start of the
following file, if one exists, or else at the LEOT.

F-20

* APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

c. The results of the DELETE procedure are affected by the
formatting arguments. If the NOHEAD argument was specified
when the file was opened or created, then the LEOT is written.
Any files following the file being deleted are also deleted and
are no longer accessible to the user. If the file does contain
a header record the file is marked as deleted and is no longer
accessible to the user. No other files are affected.

d. The low tape sensor is treated as physical end of tape. No
reading OR writing is permitted beyond this point.

The maximum permissible length of an enumeration value is the number
of characters that will fit on a single line or 251, which ever is smaller.

The user, if choosing to perform I/O with an unbounded line length, should
be mindful that the size of the internal text buffers is limited to 1024
characters. Successive calls to TEXTIO.PUT can be made so long as the
cumulative number of characters passed as arguments does not exceed the buffer
size. If the buffer size is exceeded, the exception USE ERROR is raised. A
call to TEXT IO.NEWLINE or TEXTIO.PUT._LINE empties the buffer by
requesting that the low-level portion of the I/O subsystem write the contents
of the buffer to the external file. The user must remember to count all of the
characters already in the text buffer in addition to those passed in the
argument to TEXTIO.PUT LINE in determining whether or not the size of the
text buffer will be exceeded. If the user is performing I/O on files with a
bounded line length, TEXT_10 monitors the buffer length automatically, writing
the contents of the buffer to the external file whenever the length of the
buffer reaches the limit specified by a prior call to
TEXTIO.SETLINELENGTH.

An area of special concern to the user is the reading of complex (i.e.,
composite) data types through calls to an instantiation of SEQUENTIAL_IO.READ.
[ANSI/MIL-STD-1815A] permits an implementation not to raise the exception
DATA ERROR during input operations from sequential files for which the data
type is complex. Ada/L does not support the checking of data that is read
from a sequential file against the instantiated element type.

Ada/L tape device drivers limit their support to peripheral equipment in
the following ways: no more than one RD-358 device per channel is allowed;
no more than one open file per tape and no more than four tapes per device
is permitted.

The Ada/L terminal device driver limits its support to peripheral equipment
in the following ways: no more than eight AN/USQ-69 devices per channel is
allowed; and no more than one input file and one output file can be attached
to a single terminal.

Ada/L disk device drivers limit their support to peripheral equipment
in the following ways: no more than one UYH-3 device per channel is
allowed; and no more than four disks units per device. However, more
than one open file is permitted on a disk.

F-21

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

PACKAGE TEXTIO

-- C 1987 United States Government as represented by
-- the Secretary of the Navy. ALL RIGHTS RESERVED.

- (The U.S. Government possesses the unlimited rights
- throughout the world for government purposes to
-- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
- computer firmware contained herein; and to authorize
-- others to do so.)

- Revision History:

-- 3 Feb 1987 JGR
-- Package Specification Created.

WITH 10_EXCEPTIONS, ADARTLIB, IODEFS, FILEIO;

PACKAGE TEXTIO IS

PRAGMA PAGE; -- In Package TEXTIO Specification

-- JUSTIFICATION:

-- I TEXT_IO provides input and output services for textual
-- files including creation, deletion, opening, and closing (as
-- described in Section 14.3.10 of [ANSI/MIL-STD-1815A]).

TEXT IO also will make use of the Ada feature to overload
-- subprogram names. In the cases where overloading is used,
-- each subprogram will be listed separately in its entirety.

-- DATA:

Data associated with this package will include the type
-- declarations for COUNT, POSITIVECOUNT, FIELD, NUMBERBASE,

-- TYPESET, FILEMODE and the limited private type FILETYPE.
-- The FILETYPE is an access to the FILECONTROLBLOCK, also
-- declared in this package specification. Object for the
-- standard and current default input/output FILECONTROLBLOCKs
-- are declared in this package specification.

TYPE filetype IS LIMITED PRIVATE;
-- Forward reference of the private type.

TYPE filemode IS
-- The enumerations used to indicate whether a file is set

F-22

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- for input or output.
(in_file, -- File is set for read only (input).

out file -- File is set for write only (output).

TYPE count IS RANGE 0..INTEGER'LAST;
-- Implementation-dependent.
-- This is the maximum allowable range on columns, lines,

-- and pages. Zero is used here to indicate special case of
-- an empty item.

SUBTYPE positive_count IS textio.count

RANGE l..textio.count'LAST;
-- Used to establish the allowable range for columns, lines,

-- pages, and the current indices of each.

unbounded : CONSTANT text io.count := 0;
-- The line and page lengths used for initialization

-- in the private implementation-dependent
-- declarations.

SUBTYPE field IS INTEGER RANGE 0..INTEGER'LAST;

-- Implementation-dependent.
-- This is the allowable range for widths in the type fields.

SUBTYPE number base IS INTEGER RANGE 2..16;
-- Allowable range of numeric bases used in based literal

integers.

TYPE type-set IS
-- Determines which character set is used for identifiers.
(lowercase, -- Lower case characters.

uppercase -- Upper case characters.

INITIALIZATION:

-- I The elaboration of this package will initialize the
-- I standard input and output devices of the Ada/L environment
-- I and set the current input and output devices to the standard
-- I input and output devices.

-- I CREATED TASKS:

-- I None.

-- I NESTED PACKAGES:

-- I TEXTIO.INTEGER 10,
-- I TEXTIO.FLOAT_10,
-- I TEXTIO.FIXED_IO,
-- I TEXTIO.ENUMERATIONIO

F-23

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- SUBPROGRAMS AND TASKS:

-- I

PROCEDURE CREATE
-- will create a file for text input-output.

(file : IN OUT textio.file_type;
-- The pointer to the FileControlBlock.

mode : IN textio.filemode := textio.outfile;
-- Specifies the direction of data transfer.

name : IN STRING := "";
-- Holds the external name of the file.

form : IN STRING := "I
-- System-dependent file characteristics.

PROCEDURE OPEN
-- will a file for text input-output.

(file : IN OUT textio.file_type;
-- The pointer to the FileControlBlock.

mode : IN textio.filemode;
-- Specifies the direction of data transfer.

name : IN STRING;
-- Holds the external name of the file.

form : IN STRING := ...
-- System-dependent file characteristics.

PROCEDURE CLOSE
-- will close the text input-output file.

(file : IN OUT textio.file_type
-- The pointer to the FileControlBlock.

];

PROCEDURE DELETE
-- will delete the text input-output file.

(file : IN OUT textio.file_type
-- The pointer to the FileControlBlock.

F-24

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

PROCEDURE RESET
-- will reset a text input-output file and change its mode
-- to the requested mode.

(file : IN OUT textio.file_type;
-- The pointer to the FileControlBlock.

mode : IN text io.file mode
-- The new mode of the file once it is reset.

PROCEDURE RESET
-- will reset a text input-output file but will not change
-- its mode.

(file : IN OUT textio.file_type
-- The pointer to the FileControlBlock.

FUNCTION MODE
-- will return the mode of the given text input-output file.

(file : IN text io.file type
-- The pointer to the FileControlBlock.

RETURN text io.filemode;
-- Designator for the mode of the file.

FUNCTION NAME
-- will return the name of the given text input-output file.

(file : IN textio.file type

-- The pointer to the FileControlBlock.

RETURN STRING;
-- The external name of the file.

FUNCTION FORM
-- will return the form of the given text input-output file.

(file : IN textio.filetype
-- The pointer to the FileControlBlock.

RETURN STRING;
-- The form of the file.

FUNCTION ISOPEN
-- will return the status of the given input-output file.

(file : IN textio.filetype
-- The pointer to the FileControlBlock.

RETURN BOOLEAN;

F-25

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOCLSET.

-- The pointer to the FileControlBlock.

to IN text io.count
-- The requested new line length maximum.

PROCEDURE SET LINELENGTH
-- will set the maximum line length of the default text

-- output file to the given length.

(to : IN text io.count

-- The requested new line length maximum.

PROCEDURE SET PAGELENGTH
-- will set the maximum page length of the given text output

-- file to the given length.

(file : IN text io.file type;

-- The pointer to the File ControlBlock.

to : IN text io.count
-- The requested new page length limit.

PROCEDURE SETPAGELENGTH
-- will set the maximum page length of the default text
-- output file to the given length.

(to : IN text io.count
-- The requested new page length limit.

FUNCTION LINELENGTH
-- will return the maximum line length for the given text

-- output file.
(file : IN text_ io.filetype

-- The pointer to the FileControlBlock.

RETURN text io.count;
-- The maximum line length.

FUNCTION LINELENGTH
-- will return the maximum line length for the default text

-- output file.

RETURN textio.count;
-- The maximum line length.

F-27

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

FUNCTION PAGELENGTH
-- will return the maximum page length for the given text
-- output file.

(file : IN textio.filetype
-- The pointer to the FileControlBlock.

RETURN textio.count;
-- The maximum page count.

FUNCTION PAGELENGTH
-- will return the maximum page length for the default text

-- output file.

RETURN textio.count;
-- The maximum line length.

PROCEDURE NEWLINE
-- will put the requested amount of new lines in the given

-- text output file.
(file : IN textio.file_type;

-- The pointer to the FileControlBlock.

spacing : IN textio.positivecount := 1
-- Number of lines to advance. Initialized to
-- one for a default value. Hence, this

-- parameter is optional.

PROCEDURE NEW LINE
-- will put the requested amount of new lines in the default

-- text output file.
(spacing : IN textio.positivecount 1

-- Number of lines to advance. initialized to

-- one for a default value. Hence, this

-- parameter is optional.

PROCEDURE SKIPLINE
-- will skip the requested amount of lines in the given text
-- input file.

(file : IN textio.file_type;
-- The pointer to the FileControlBlock.

spacing : IN text io.positivecount := 1
-- The number of lines to be advanced in the
-- file. The default of one is set to ensure
-- that at least an advance to the beginning

-- of the next line is achieved.

F-28

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

PROCEDURE SKIPLINE
-- will skip the requested amount of lines in the default
-- text input file.

(spacing : IN text_io.positive_count := 1
-- The number of lines to be advanced in the

-- file. The default of one is set to ensure
-- that at least an advance to the beginning

-- of the next line is achieved.

FUNCTION END OF LINE
-- will indicate if the end of the line has been reached for

-- the given text input file.
(file : IN text io.file type

-- The pointer to the FileControlBlock.

RETURN BOOLEAN;
-- Indication of end of line found.

FUNCTION END OF LINE

-- will indicate if the end of the line has been reached for

-- the default text input file.

RETURN BOOLEAN;
-- Indication of end of line found.

PROCEDURE NEW PAGE
-- will end the current page and start a new page in the
-- given text output file.

(file : IN text_ io.file type

-- The pointer to the FileControlBlock.

PROCEDURE NEWPAGE;
-- will end the current page and start a new page in the

-- default text output file.

PROCEDURE SKIP PAGE

-- will skip to the beginning of the next page in the given

-- text input file.

(file : IN textio.filetype
-- The pointer to the FileControlBlock.

F-29

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

PROCEDURE SKIPPAGE;
-- will skip to the beginning of the next page in the

-- default text input file.

FUNCTION END OF PAGE

-- will indicate if the end of the page has Leen reached
-- for the given text input file,

(file : IN textio.filetype
-- The pointer to the FileControlBlock.

RETURN BOOLEAN;
-- Indication of end of line found.

FUNCTION END OF PAGE
-- will indicate if the end of the page has been reached for

-- the default text input file.

RETURN BOOLFAN;
-- Indication of end of line found.

FUNCTION END OF FILE
-- will indicate if the end of the file has been reached for

-- the given text input file.

(file IN text io.filetype

-- The pointer to the File ControlBlock.

RETURN BOOLEAN;
-- Indication of end of file found.

FUNCTION ENDOFFILE
-- will indicate if the end of the file has been reached for
-- the default text input file.

RETURN nOOLEAN;
-- Indication of end of file found.

PROCEDURE SETCOL
-- will set the current column to read-write to the given
-- column in the given text input-output file.

(file : IN text_ io.filetype;
-- The pointer to the FileControlBlock.

to : IN textio.positivecount
-- The new column to set the position pointer to.

PROCEDURE SETCOL

F-30

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- will set the current column to read-write to the given

-- column in the default text input-output file.

(to : IN text_io.positivecount
-- The new column to set the position pointer to.

PROCEDURE SETLINE
-- will set the current line to read-write to the given line
-- in the given text input-output file.

(file : IN textio.filetype;
-- The pointer to the FileControlBlock.

to : IN textio.positivecount
-- The new line to set the position pointer to.

PROCEDURE SETLINE
-- will set the current line to read-write to the given line

-- in the default text input-output file.

(to : IN text io.positivecount

-- The new line to set the position pointer to.

FUNCTION COL
-- will return the current column position for the given text

-- input-output file.

(file IN text_ io.file type

-- The pointer to the FileControlBlock.

RETURN textio.positivecount;
-- The value of the current column index.

FUNCTION! COL
-- will return the current column position for the default

-- text input-output file.

RETURN text-io.positivecount;
-- The value of the current column index.

FUNCTION LINE
-- will return the current line position for the given text

-- input-output file.

(file IN textio.filetype

-- The pointer to the FileControlBlock.

RETURN text io.positivecount;
-- The value of the current line index.

F-31

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

FUNCTION LINE
-- will return the current line position for the default text

-- input-output file.

RETURN textio.positivecount;
-- The value of the current line index.

FUNCTION PAGE
-- will return the current page number for the given text

-- input-output file.
(file : IN text io.file type

-- The pointer to the FileControlBlock.

) RETURN text io.positive count;

-- The current page number.

FUNCTION PAGE
-- will return the current page number for the default text

-- input-output file.

RETURN text io.positivecount;
-- The current page number.

PROCEDURE GET
-- will read a character from the given text input file.

(file IN text io.file type;

-- The pointer to the FileControlBlock.

item OUT CHARACTER
-- The character to return.

PROCEDURE GET
-- will read a character from the default text input file.

(item : OUT CHARACTER

-- The character to return.

PROCEDURE PUT
-- will write a character to the given text output file.

(file : IN text io.file type;

-- The pointer to the File ControlBlock.

item : IN CHARACTER

-- Character to write to the file.

F-32

APPENDIX F OF THZ ADA LRM FOR TFE ADAUYK43 TOOLSET.

'ROCEDURE PUT
- will write a character to the default text output file.

(item : IN CHARACTE
-- Character to write to the FileControlBlock.

)ROCEDURE GET
will read a string from the given text input file.
(file : IN text_io.filetype;

-- The pointer to the File ControlBlock.

item : OUT STRING
-- The string to return.

?KOCEDUFE GET
-- will read a string from the default text input file.

(item : OUT STRING
-- The string to return.

PROCEDURE PUT
-- will write a string to the civen text output file.

(file : IN text_io.file_type;
-- The pointer to the File_Ccntrol_Block.

item : :N STR:NG
-- String to write t

PROCEDURE PUT
-- will write a string to the default text output file.

(item : IN STRING
-- String to write to the FileControlBlock.

PROCEDURE GETLINE
-- will read the remaining portion of a line from the given

-- text input file.
(file : IN text_io.filetype:

-- The pointer to the FileControl_Block.

F-33

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

item : OUT STRING;
-- The string to return.

last : OUT NATURAL
-- An index containing a value such that
-- item(last) is last character read.

PROCEDURE GET LINE
-- will read the remaining portion of a line from the
-- default text input file.

(item : OUT STRING;
-- The string to return.

last : OUT NATURAL
-- An index containing a value such that
-- item(last) is last character read.

PROCEDURE PUTLINE
-- will write a line to the given text output file and
-- advance to the next line.

(file : IN text io.file type;
-- The pointer to the FileControlBlock.

item : IN STRING
-- String to write to the file.

PROCEDURE PUT LINE
-- will write a line to the default text output file and
-- advance to the next line.

(item : IN STRING
-- String to write to the FileControl_Block.

PRAGMA PAGE; -- In Package TEXTIO.INTEGERIO Specification

-- C 1987 United States Government as represented by
-- the Secretary of the Navy. ALL RIGHTS RESERVED.

-- (The U.S. Government possesses the unlimited rights
-- throughout the world for government purposes to
-- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
-- computer firmware contained herein; and to authorize
-- others to do so.)

F-34

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- Revision History:

-- 3 Feb 1987 JGR
-- Package Specification Created.

GENERIC

TYPE num IS RANGE <>;
-- The type and range used upon instantiation of the
-- INTEGER_10 package.

PACKAGE INTEGERIO IS

PRAGMA PAGE; -- In Package TEXTIO.INTEGERIO Specification

-- JUSTIFICATION:

INTEGER_10 contains the subprograms necessary for the
-- user to perform Text I/O for integer types (as described in
-- Section 14.3.7 of (ANSI/MIL-STD-1815A]). INTEGER 10 is a
-- generic package, internal to the body of TEXT_10 and must be
-- I instantiated prior to its use. INTEGER_IO primarily allows
-- the reading (getting) and writing (putting) of integers of
-- the type INTEGERIO.NUM either with respect to strings or
-- with respect to text files.

INTEGER 10 also will make use of the Ada feature to
-- overload subprogram names. In the cases where overloading
-- I is used, each subprogram will be listed separately in its
-- entirety.

-- DATA:

Generic package level declarations for input-output of

--I integer types.

defaultwidth : textio.field := num'WIDTH;
-- The default integer width. Initialized to
-- the width of the instantiated type, though
-- the user may reset to the desired width.

defaultbase : textio.numberbase := 10;
-- The default base width. Initialized to the
-- width of the instantiated type, though the
-- user may reset to the desired width.

-- I CREATED TASKS:

F-35

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- I
-- I None.

-- INITIALIZATION:

-_I The data of this package specification is initialized to
-- I a default integer type NUM with a default width large enough
-- to support the range of NUM and a default base of ten.

-- Elaboration of this package will raise an USEERROR if
-- the size of NUM exceeds the implementation dependent size
-- of a longinteger.

-- SUBPROGRAMS AND TASKS:

PROCEDURE GET
-- will read an integer from the given text input file.

(file : IN textio.filetype;
-- Pointer to the specified file to read from.

item : OUT num;
-- The generic integer type result.

width : IN text io.field := 0

-- Amount of characters to read. The default is
-- zero and will read the entire string.

PROCEDURE GET
-- will read an integer from the default text input file.

(item : OUT num;
-- The generic integer type result.

width : IN text io.field := 0
-- Amount of characters to read. The default is
-- zero and will read the entire string.

PROCEDURE PUT
-- will write an integer to the given text input file.

(file : IN text io.filetype;
-- Pointer to the specified file to write to.

item : IN num;
-- The generic integer type to write.

F-36

" APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

width : IN textio.field := default_width;
-- The width of item. Initialized to the width
-- of the instantiated integer type. May be

-- reset by the user.

base : IN textio.numberbase :- default-base
-- The base of item. Initialized to the default
-- base 10, but may have ranges 2..16.

PROCEDURE PUT
-- will write an integer to the default text input file.

(item : IN num;
-- The generic integer type to write.

width : IN textio.field := default width;
-- The width of item. Initialized to the width
-- of the instantiated integer type. May be

-- reset by the user.

base : IN text io.number base := default base
-- The base of item. Initialized to the default
-- base 10, but may have ranges 2..16.

PROCEDURE GET
-- will read an integer form the given text string.

(from : IN STRING;
-- The string to read from.

item : OUT num;
-- The generic integer type result.

last : OUT positive
-- Index of the last character read

-- from the string.

PROCEDURE PUT
-- will write an integer Lo the given text string.

(to : OUT STRING;
-- The string containing the integer image.

item : IN num;
-- The generic integer type to write.

base : IN text _io.number base := defaultbase
-- The base of item. Initialized to the default
-- base 10, but may have ranges 2..16.

F-37

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

END INTEGER IO;

PRAGMA PAGE; -- In Package TEXTIO.FLOAT_IO Specification

-- C 1987 United States Government as represented by
-- the Secretary of the Navy. ALL RIGHTS RESERVED.

-- (The U.S. Government possesses the unlimited rights
-- throughout the world for government purposes to
-- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
-- computer firmware contained herein; and to authorize
-- others to do so.)

-- Revision History:

-- 3 Feb 1987 JGR

-- Package Specification Created.

GENERIC

TYPE num IS DIGITS <>;
-- The type and range used upon instantiation of the
-- FLOATIO package.

PACKAGE FLOATIO IS

PRAGMA PAGE; -- In PacKage TEXTIO.FLOAT_IO Specification

-- JUSTIFICATION:

FLOAT_10 contains the subprograms necessary for the user
-- to perform Text_10 for floating point types (as described in
-- Section 14.3.8 of (ANSI/MIL-STD-1815A]). FLOAT 10 is a
-- generic package, internal to the body of TEXTIO and must be
--I instantiated prior to its use. FLOAT_IO primarily allows
-- the reading (getting) and writing (putting) of floating
-- point values of the type FLOATIO.NUM either with respect to
-- strings or with respect to text files.

--I FLOATIO also will make use of the Ada feature to ovezload
-- subprogram names. In the cases where overloading is used,
-- each subprogram will be listed separately in its entirety.

-- DATA:

F-38

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- I Generic package level declarations for input-output of
-- I floating point types.-

default fore : textio.field := 2;
-- The default width of the whole number portion
-- of the floating point type.

default aft : textio.field := num'DIGITS-l;
-- The default width of the decimal portion of the
-- floating point type.

default exp : textio.field := 3;
-- The default width of the exponent field
-- following the character E when a nonzero

-- exponent is provided.

-- I CREATED TASKS:
-- I
-- I None.

-- INITIALIZATION:

The data of this package specification is initialized to
-- a default floating point type NUM with a default FORE of two
-- characters (the decimal representation), a default AFT
-- large enough to support the range of NUM (the fractional
--I representation), and a default EXP of three characters (the
-- exponent representation).

-- I SUBPROGRAMS AND TASKS:

PROCEDURE GET
-- will read a floating point real from the given text
-- input file.

(file : IN textio.filetype;
-- Pointer to the specified file to read from.

item : OUT num;
-- The generic floating point type result.

width : IN text io.field := 0
-- Amount of characters to read. The default is
-- zero and will read the entire string.

PROCEDURE GET
-- will read a floating point real from the default text

F-39

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- input file.
(item : OUT num;

-- The generic floating point type result.

width : IN text io.field := 0
-- Amount of characters to read. The default is
-- zero and will read the entire string.

PROCEDURE PUT
-- will write a floating point real to the given text input
-- file.

(file : IN textio.file_type;
-- Pointer to the specified file to write to.

item : IN num;
-- The generic floating point type to write.

fore : IN textio.field := default fore;
-- The width of the whole number portion cf the
-- floating point value. Initialized to the width

-- of two. May be reset by the user.

aft : IN textio.field := default aft;
-- The width of the decimal portion of the
-- floating point value. Initialized to the

-- default width of the number of digits in the
-- instantiated type minus one. May be reset by
-- the user.

exp IN textio.field := default exp
-- The width of the exponent field following the
-- character E. Initialized to the wid" of
-- three. May be reset by the user.

PROCEDURE PUT
-- will write a floating point real to the default text input
-- file.

(item : IN num;
-- The generic floating point type to write.

fore : IN textio.field := default fore;
-- The width of the whole number portion of the
-- floating point value. Initialized to the width
-- of two. May be reset by the user.

aft : IN textio.field := default-aft;
-- The width of the decimal portion of the
-- floating point value. Initialized to the
-- default width of the number of digits in the

F-40

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- instantiated type minus one. May be reset by
-- the user.

exp IN textio.field := default_exp
-- The width of the exponent field following the
-- character E. Initialized to the width of
-- three. May be reset by the user.

PROCEDURE GET
-- will read a floating point real from the given text string.

(from : IN STRING;
-- The string to read from.

item : OUT num;
-- The generic floating point type result.

last : OUT positive
-- Index of the last character read from
-- the string.

PROCEDURE PUT
-- will write a floating point real to the given text string.

(to : OUT STRING;
-- The string containing the floating point image.

item : IN num;
-- The generic floating point type to write.

aft : IN text io.field := default aft;
-- The width of the decimal portion of the
-- floating point value. Initialized to the

-- default width of the number of digits in the
-- instantiated type minus one. May be reset by
-- the user.

exp IN textio.field := defaultexp
-- The width of the exponent field following the
-- character E. Initialized to the width of

-- three. May be reset by the user.

END FLOAT_10;

PRAGMA PAGE; -- In Package TEXTIO.FIXED_IO Specification

-- C 1987 United States Government as represented by
-- the Secretary of the Navy. ALL RIGHTS RESERVED.

F-41

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- (The U.S. Government possesses the unlimited rights
-- throughout the world for government purposes to
-- publish, translate,-reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
-- computer firmware contained herein; and to authorize
-- others to do so.)

-- Revision History:

-- 3 Feb 1987 JGR
-- Package Specification Created.

GENERIC

TYPE num IS DELTA <>;
-- The type and range used upon instantiation of the
-- FIXEDIO package.

PACKAGE FIXEDIO IS

PRAGMA PAGE, -- In Package TEXTIO.FIXED_IO Specification

-- 1 . JUSTIFICATION

-- FIXED_IO contains the subprograms necessary for the user
-- to perform Text_10 for fixed point types (as described in
-- Section 14.3.8 of [ANSI/MIL-STD-1815A]). FIXED 10 is a
-- generic package, internal to the body of TEXT_10 and must be
-- I instantiated prior to its use. FIXED_IO primarily allows the
-- reading (getting) and writing (putting) of fixed point values
-- of the type FIXED_IO.NUM either with respect to strings or

with respect to text files.

-- FIXED 10 also will make use of the Ada feature to
-- overload subprogram names. In the cases where overloading
-- j is used, each subprogram will be listed separately in its
-- entirety.

-- I 2. DATA

-- I Generic package level declarations for input-output of
-- I fixed point types.

defaultfore : textio.field := num'FORE;
-- The default width of the whole number portion
-- of the floating point type.

default-aft : text io.field := num'AFT;

F-42

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- The default width of the decimal portion of the
-- floating point type.

default exp : text io.field := 0;
-- The default width of the exponent field

-- following the character E when a nonzero

-- exponent is provided.

-- I 3. CREATED TASKS

-- I None.

-- 4. INITIALIZATION

--I The data of this package specification is ini' lized to
-- a default fixed point type NUM with a default FORZ large
-- enough to represent the decimal part of type NUM, a default
-- AFT large enough to represent the fractional part of type
-- N UM, and a default EXPonent of zero characters.

-- 5. SUBPROGRAMS AND TASKS

-- The following routines are used for fixed point input-output.

PROCEDURE GET
-- will read a fixed point real from the given text input
-- file.

(file : IN textio.filetype;
-- Pointer to the specified file to read from.

item : OUT num;
-- The generic fixed point type result.

width : IN text io.field := 0
-- Amount of characters to read. The default is
-- zero and will read the entire string.

PROCEDURE GET
-- will read a fixed point real from the default text

-- input file.

(item : OUT num;
-- The generic fixed point type result.

width : IN textio.field := 0
-- Amount of characters to read. The default is
-- zero and will read the entire string.

F-43

APPENDIX F OF THE ADA LRM FOR THE ADiUYK43 TOOLSET.

PROCEDURE PUT
-- will write a fixed point real to the given text input file.

(file : IN text io.filetype;
-- Pointer to the specified file to write to.

item : IN num;
-- The generic fixed point type to write.

fore : IN textio.field := defaultfore;
-- The width of the whole number portion of the
-- fixed point value. Initialized to the width
-- of two. May be reset by the user.

aft : IN textio.field := defaultaft;
-- The width of the decimal portion of the fixed
-- point value. Initialized to the default width

-- of the number of digits in the instantiated
-- type minus one. May be reset by the user.

exp : IN text_ io.field := default_exp
-- The width of the exponent field following the

-- character E. Initialized to the width of

-- three. May be reset by the user.

PROCEDURE PUT
-- will write a fixed point real to the default text input

-- file.

(item : IN num;
-- The generic fixed point type to write.

fore : IN textio.field := defaultfore;
-- The width cf the whole number portion of the
-- fixed point value. Initialized to the width

-- of two. May be reset by the user.

aft : IN textio.field := defaultaft;
-- The width of the decimal portion of the fixed
-- point value. Initialized to the default width

-- of the number of digits in the instantiated
-- type minus one. May be reset by the user.

exp IN textio.field := default_exp
-- The width of the exponent field following the

-- character E. Initialized to the width of

-- three. May be reset by the user.

F-44

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

PROCEDURE GET
-- will read a fixed point real from the given text string.

(from : IN STRING;
-- The string to read from.

item : OUT num;
-- The generic fixed point type result.

last : OUT positive
-- Index of the last character read from
-- the string.

PROCEDURE PUT
-- will write a fixed point real to the given text string.

(to : OUT STRING;
-- The string containing the fixed point image.

item : IN num;
-- The generic fixed point type to write.

aft : IN text _ io.field := default aft;
-- The width of the decimal portion of the fixed
-- point value. Initialized to the default width

-- of the number of digits in the instantiated
-- type minus one. May be reset by the user.

exp : IN textio.field := defaultexp
-- The width of the exponent field following the
-- character E. Initialized to the width of

-- three. May be reset by the user.

END FIXEDIO;

PRAGMA PAGE; -- in Package TEXT I0.EN'JY-ERAT:oN_10 Specification

-- C 1987 United States Government as represented by
-- the Secretary of the Navy. ALL RIGHTS RESERVED.

-- (The U.S. Government possesses the unlimited rights
-- throughout the world for government purposes to
-- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
-- computer firmware contained herein; and to authorize
-- others to do so.)

-- Revision History:

F-45

| | | | | |

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- 3 Feb 1987 JGR

-- Package Specification Created.

GENERIC

TYPE enum IS (<>):
-- The type used upon instantiation of the

-- ENUMERATIONIO package.

PACKAGE ENUMERATIONIO IS

PRAGMA PAGE; -- In Package TEXTIO.ENUMERATIONIO Specification

-- JUSTIFICATION:

-- I ENUMERATIONIO contains the subprograms necessary for the
-- user to perform Text_10 for enumeration types (as described
-- in Section 14.3.9 of [ANSI/MIL-STD-1815A]). ENUMERATION 10
-- is a generic package, internal to the body of TEXT_10 and
-- must be instantiated prior to its use. ENUMERATION 10
-- primarily allows the reading (getting) and writing (putting)
-- of enumerations of the type ENUMERATIONIO.ENUM either with
-- respect to strings or with respect to text files.

-- I ENUMERATIONIO also will make use of the Ada feature to

-- overload subprogram names. In the cases where overloading is
-- used, each subprogram will be listed separately in its
-- entirety.

-- I DATA:

-- I Generic package level declarations for input-output of
enumeration types.

default width : text _io.field := 0;
-- The default field width of the character(s)
-- including any trailing spaces.

default-setting : textio.typeset := textio.uppercase;
-- The default character case of the letter(S).

-- I CREATED TASKS:

-- I None.

-- IINITIALIZATION:

The data in this package specification is initialized to

-- I a default enumeration type NUM with a default width of zero

F-46

APPENDIX F OF THE ADA LRM FOR THE ADAUYR43 TOOLSET.

-- I and a default case of uppercase.

-- I SUBPROGRAMS AND TASKS:

PROCEDURE GET
-- will read an enumeration literal from the given text
-- input file.

(file : IN text io.filetype;
-- Pointer to the specified file to read from.

item : OUT enum
-- The generic enumeration type result.

PROCEDURE GET
-- will read an enumeration literal from the default text
-- input file.

(item : OUT enum
-- The aeneric enumeration type result.

PROCEDURE PUT
-- will write an enumeration literal to the given text input
-- file.

(file : IN text_ io.filetype;
-- Pointer to the specified file to write to.

item : IN enum;
-- The generic enumeration type to write.

width : 7N text _io.fieid := default width;
-- The width of item. Initialized to the width
-- cf the instantiated enumeration type. May be

-- reset by the user.

set : IN textio.typeset := defaultsetting
-- The character type to be used. Initialized to
-- the default setting of upper-case letters.
-- May be reset by the user.

PROCEDURE PUT
-- will write an enumeration literal to the default text
-- input file.

(item : !N enum;
-- The generic enumeration type to write.

F-47

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

width : IN text io.field := defaultwidth;
-- The width of item. Initialized to the width
-- of the instantiated enumeration type. May be
-- reset by the user.

set : IN text io.typeset := defaultsetting
-- The character type to be used. Initialized to
-- the default setting of upper-case letters.
-- May be reset by the user.

PROCEDURE GET
-- will read an enumeration literal from the given text
-- string.

(from : IN STRING;
-- The string to read from.

item : OUT enum;
-- The generic enumeration type result.

last : OUT positive
-- Index of the last character of the enumeration
-- literal.

PROCEDURE PUT
-- will write an enumeration literal to the given text string.

(to : OUT STRING;
-- The string containing the enumeration image.

item : IN enum;
-- The generic enumeration type to write.

set : IN text_ic.typeset := defaultsetting
-- The character type to be used. Initialized to
-- the default setting of upper-case letterr. May
-- be reset by the user.

END ENUMERATIONIO;

PRAGMA PAGE; -- In Package TEXTIO Specification

-- These are the Text I/O-specific Ada exceptions.

statuserror : EXCEPTION RENAMES ioexceptions.statuserror;
-- Indicates that the file is not properly set
-- for the requested operation.

F-48

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

mode-error : EXCEPTION RENAMES io-exceptions.modeerror;
-- Indicates that the file was not in the proper
-- mode for an attempted read or write operation.

nameerror : EXCEPTION RENAMES io exceptions.name error;
-- Indicates that the syntax of the name is not
-- valid or that the name has already been used.

use-error : EXCEPTION RENAMES io exceptions.useerror;
-- Indicates the improper usage of a file.

deviceerror i EXCEPTION RENAMES ioexceptions.deviceerror;
-- Indicates that a device driver program has
-- failed for one reason or another.

end-error : EXCEPTION RENAMES io_exceptions.enderror;
-- Indicates that an attempt was made to read
-- past the end of the file.

dataerror : EXCEPTION RENAMES ioexceptions.dataerror;
-- Indicates that an attempt was made, to read
-- from a file into a buffer or write from a
-- buffer into a file, data that is of the wrong
-- type.

layout_error EXCEPTION RENAMES io_exceptions.layout_error;
-- Indicates that an attempt was made to set the
-- column or line numbers in excess of the

-- currently specified line and page maximums.
-- It will also indicate when an attempt has
-- been made to PUT too many characters to a
-- string.

PRAGMA PAGE; -- In Package TEXTIO Specification

-- The following are the private implementation-dependent
-- declarations.

PRIVATE

TYPE file control block;
-- The FileControlBlock forward declaration.

TYPE file_type IS ACCESS textio.filecontrolblock;
-- Defines the access pointer to the FileControlBlock.

-- These are the required file marker values for this particular
-- implementation.

line-term : CONSTANT CHARACTER := ASCII.LF;
-- The character used to indicate the end

-- of the current line. <CTRL-M>.

page_term : CONSTANT CHARACTER := ASCII.FF;
-- The character used to indicate the end

F-49

APPENDIX F OF THE ADA LR FOR THE ADAUYK43 TOOLSET.

-- of the current page. <CTRL-L>.

fileterm CONSTANT CHARACTER := ASCII.SUB;
-- The character used to indicate the end

-- of the file. <CTRL-Z>.

-- The following constant declarations are required for use
-- within the FileControlBlock.

nullstrm : CONSTANT file io.stream id prv := NULL;
-- A null value for the stream pointers

-- used during initializations.

buffer-length : CONSTANT := iodefs.buffer datalimit;
-- The upper bound for the text buffers

-- used in the file ControlBlock. This

-- is the maximum amount of data that the
-- vertual mamory can handle in an I/O

-- request at one time.

max linelength CONSTANT := io defs.bufferdatalimit;
-- Establishes the restrictions for a line

-- length of 1020. This will then
-- coincide with the maximum buffer length

-- and the maximum amount of data that
-- the vertual memory can handle in an

-- I/O request at one time and still
-- leave the necessary amount of trailing
-- space for the information required by

-- the Ada/L device drivers.

-- The folowing type declarations define types used within the
-- FileControlBlock.

TYPE charbuffer IS ARRAY (io_defs.datalenathint RANGE
l..text _ io.bufferlength) OF CHARACTER;

-- Estsblishes the characteristics for the text

-- buffers used in the FileControlBlock.

TYPE buffer_ptr IS ACCESS textio.charbuffer;
-- Defines the access pointers to the text buffers
-- used in the FileControlBlock.

-- The following object declaration is required to support
-- temporary file name creation.

tempfile count : INTEGER := 0;
-- Counts the number of temporary files created
-- by the User-WrittenAda Program. The 'IMAGE

-- of this object will be added to the
-- temporaryfile name to ensure that all files
-- remain unique.

F-50

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- These are the standard and current file control blocks. They
- are not visible to the user except through the provided
-- routines.

std_input : text io.file type;
-- The access pointer to the Standard default
-- input FileControlBlock.

std output : text io.file type;
-- The access pointer to the Standard default
-- output FileControlBlock.

curr input : textio.file type;
-- The access pointer to the current default
-- input FileControlBlock.

curr output : text io.file type;
-- The access pointer to the current default

-- output FileControlBlock.

-- Full declaration for the File ControlBlock.
TYPE file control block IS

-- The FileControlBlock state description. The actual
-- FILETYPE declarations will be access types to this record.
RECORD

strmptr : fileio.stream id prv
textio.nullstrm;

-- Contains the system's link to the

-- external file.

external-name :io defs.file name str
(OTHERS => ' ');

-- Holds the external name of the file.

-- Initialized to blanks to clear any
-- portion that will not be used.

temporary BOOLEAN := FALSE;
-- Indicates whether the file was

-- created as a temporary file, or
-- created for permanent storage.
-- Initialized to the value of false
-- since the standard input and output

-- blocks also use this

-- FileControlBlock.

files class :iodefs.file class enu
_iodefs.fctext;

-- Contains the value indicating the

-- type of data in the file. Initialized
-- for the text oriented input and

-- output.

F-51

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

f_mode : text io.file mode;
-- Contains the value indicating the

-- mode of the file.

interactive : BOOLEAN := FALSE;
-- Indicator showing whether the file is
- being used either directly to or from

-- a display terminal, or to or from a

-- tape file. Initialized to false fcr

-- tape files.

endinfo : BOOLEAN := FALSE;
-- Indicator showing whether the end of

-- data presently being processed has
-- been reached.

currcol : text io.count :z 1;

-- Holds the present column index
-- position for the current line.

-- Initialized to the start of a new

-- line.

currline : text io.count := 1;
-- Holds the present line index position

-- for the current page. Initialized to

-- the start or a new page.

line len : text io.count := text io.unbounded;
-- Holds the maximum allowable line

-- length limit. Initialized for

-- unformatted text output.

currpage : textio.count := 1;
-- Holds the present page index in the
-- current file. Initialized to the

-- start of a new file.

pagefen : textio.count := textio.unbounded;
-- Holds the maximum allowable page
-- length limit. Initialized for

-- unformatted text output.

eoln found : BOOLEAN := FALSE;
-- Indicator showing whether the end of

-- current line has been reached.
-- Initialized to false for the

-- beginning of the first line.

eopfound BOOLEAN := FALSE;
-- Indicator showing whether the end of

-- current page has been reached.
-- Initialized to false for the beginning

-- of the first page.

eof found BOOLEAN := FALSE;

F-52

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- Indicator showing whether the end of
current file has been reached.

-- Initialized to false for the

-- beginning of a file.

text buf : textio.buffer_ptr := NULL;
-- The primary text buffer for all

-- reading and writing of text
-- characters.

next but : text io.bufferptr := NULL;
-- The alternate text buffer for the

-- reading of text characters.

text-index : io defs.datalength_int := 0;
-- Holds the value used to index into

-- the primary text buffer. Initialized
-- to show that the primary text buffer

-- is initially empty.

currrec length : io_defs.datalength_int := 0;
-- Holds the length of data, in elements,

-- contained in the primary text buffer.
-- Initialized to show that the primary

-- text buffer is initially empty.

nextrec length io defs.datalength_int := 0;
-- Holds the length of data, in elements,
-- contained in the alternate text
-- buffer. Initialized to show that the

-- alternate text buffer is initially

-- empty.

max-rec length textio.count := text io.max line length;
-- Holds the maximum allowable length of

-- data, in elements, for the primary

-- and alternate text buffers.
-- Initialized to the maximum amount of

-- elements that can be handled by the

-- device drivers in a single transfer.

exclusion adartlib.mutex.semaphoretype;
-- Declares the access to the mutual

-- exclusion task required for solitary
-- access to the FileControlBlock.

END RECORO;

END TEXTIO;

F-53

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

,**te*,*******,,*******.*.*,***.******,**ttt ttttttttte*,.t*.*,**

PACKAGE DIRECT_10

-- C 1987 United States Government as represented by
-- the Secretary of the Navy. ALL RIGHTS RESERVED.

-- (The U.S. Government possesses the unlimited rights
-- throughout the world for government purposes to
-- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
-- computer firmware contained herein; and to authorize
-- others to do so.)

-- Revision History:

-- 3 Feb 1987 JGR
-- Package Specification Created.

WITH IOEXCEPTIONS, 10_SUPPORT;

GENERIC

TYPE elementtype IS PRIVATE;
-- The type of the element instantiated on the call to
-- any of the subprograms of this package. It is
-- determined by the type of the element being used
-- in the invoking subprogram.

PACKAGE DIRECT_10 IS

PRAGMA PAGE; -- In Package DIRECTIO Specification

-- JUSTIFICATI0!:

DIRECT_10 contains the subprograms necessary for the user
-- I to perform direct access I/O operations (as described in
-- Section 14.2.1 and Section 14.2.4 of [ANSI/MIL-STD-1815AJ).
-- DIRECT_IO is primarily an interface, between the
-- User-Written AdaProgram and the package IO_SUPPORT which

does the actual work for DIRECT_10 operations. In serving
-- as this interface, DIRECT_10 contains only the calls and
-- necessary conversions for the calls to invoke the subprograms
-- of 10_SUPPORT. DIRECTIO is a generic package thus enabling
-- I it to work for all instantiated types.

-- DIRECT 10 also will make use of the Ada feature to
-- overload subprogram names. In the cases where overloading
-- I is used, each subprogram will be listed separately in its
-- entirety.

F-54

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- I DATA:

-- I Type declarations for the limited private type FILE TYPE
-- I and the types FILE MODE, COUNT, and POSITIVECOUNT are
-- I declared in this package specification.

TYPE filetype IS LIMITED PRIVATE;
-- Forward declaration. The formal declaration will
-- appear later.

TYPE file-mode IS
-- Allowable modes for direct files.

(in_file, -- Input mode (read only).
inoutfile, -- Input and output modes (read

-- and write both).
outfile -- Output mode (write only).

TYPE count IS RANGE 0..io_support.count'LAST;
-- This is the maximum allowable range on columns, lines, and
-- pages. Zero is used here to indicate special case of empty
-- items.

SUBTYPE positive_count IS count
RANGE l..count'LAST;
-- Used to establish the allowable range for buffer indices.

-- I INITIALIZATION:

-- I None.

-- I CREATED TASKS:

-- I None.

-- I SUBPROGRAMS AND TASKS:

PROCEDURE CREATE
-- will create a file for direct access.

(file : IN OUT filetype;
-- Points to the block containing

-- the file information.

mode : IN file mode := inout file;
-- Specifies that the file is to be both read from
-- and written to.

F-55

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

name : IN STRING : "";
-- The name of the external file.

form : IN STRING := ""
-- Used by the system for file characteristics.

PROCEDURE OPEN
-- will open a file for direct access.

(file : IN OUT filetype;
-- Points to the block containing the
-- file information.

mode : IN filemode;
-- Specifies whether the file is to be read from,
-- written to, or both.

name : IN STRING;
-- The name of the external file.

form : IN STRING
-- Used by the system for file characteristics.

PROCEDURE CLOSE
-- will close a direct access file.

(file : IN OUT filetype
-- Points to the block containing the
-- file information.

PROCEDURE DELETE
-- will delete a direct access file.

(file : IN OUT filetype
-- Points to the block containing the
-- file information.

PROCEDURE RESET
-- will reset a direct access file and change
-- its mode to the requested mode.

(file : IN OUT filetype;
-- Points to the block containing the
-- file information.

mode : IN file-mode

F-56

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- Specifies whether the file is to be read from,
-- written to, or both.

PROCEDURE RESET
-- will reset a direct access file but will

-- not change its mode.
(file : IN OUT file-type

-- Points to the block containing the

-- file information.

FUNCTION MODE
-- gives the mode of the direct access file.

(file : IN file type
-- Points to the block containing the

-- file information.

RETURN filemode;
-- Mode to return to invoking subprogram.

FUNCTION NAME
-- gives the external name of the direct access file.

(file : IN filetype
-- Points to the block containing the
-- file information.

RETURN STRING;
-- The name of the external file.

FUNCTION FORM
-- gives the form of the direct access file.

(file : IN filetype
-- Points to the block containing the

-- file information.

RETURN STRING;
-- The form of the external file.

FUNCTION IS OPEN
-- indicates whether the direct access file is open.

(file : IN filetype
-- Points to the block containing the

-- file information.

RETURN BOOLEAN;
-- Status of the file.

F-57
at

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

PROCEDURE READ
-- will read from a direct access file starting at the given
-- position.

(file : IN filetype;
-- Points to the block containing the

-- file information.

item : OUT elementtype;
-- Holds the data being read.

from : IN positivecount
-- Specifies the index to be used by the operation.

PROCEDURE READ
-- will read from a direct access file from the position

-- following the last read position.
(file : IN filetype;

-- Points to the block containing the

-- file information.

item : OUT elementtype

-- Holds the data being read.

PROCEDURE WRITE
-- will write to a direct access file at the position given.

(file : IN filetype;
-- Points to the block containing the
-- file information.

item : IN element type;

-- Holds the data being written.

to : IN positive count
-- Index of the element in the file to be used for
-- transfer.

PROCEDURE WRITE
-- will write to a direct access file at the position
-- following the last 4ritten position.

(file : IN filetype;
-- Points tc, the block containing the
-- file information.

item : IN elementtype

F-58

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- Holds the data being written.

PROCEDURE SETINDEX
-- will set a direct access file's index to the gi-.en
-- position.

(file : IN filetype;
-- Points to the block containing the

-- file information.

to : IN positivecount
-- Specifies the new index to be set.

FUNCTION INDEX
-- gives the position of a direct access file's index.

(file : IN filetype
-- Points to the block containing the

-- file information.

RETURN positive count;
-- The current index position.

FUNCTION SIZE
-- gives the size of the direct access file.

(file IN filetype
-- Points to the block containing the
-- file information.

RETURN count;
-- Size in elements of the file.

FUNCTION END OF FILE
-- indicates whether the end of the direct access file has
-- been reached.

(file IN filetype
-- Points to the block containing the

-- file information.

RETURN BOOLEAN;
-- Indicator of end of file test.

PRAGMA PAGE; -- In Package DIRECTIO Specificaticn

-- The following are the I/O-specific Ada exceptions.

statuserror : EXCEPTION RENAMES io exceptions.status _error;
-- Indicates that the file is not properly set

F-59

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- for the requested operation.

modeerror : EXCEPTION RENAMES io-exceptions.modeerror;
-- Indicates that the file was not in the proper
-- mode for an attempted read or write operation.

nameerror : EXCEPTION RENAMES io exceptions.nameerror;
-- Indicates that the syntax of the name is not
-- valid or that the name has already been used.

use-error : EXCEPTION RENAMES io-exceptions.useerror;
-- Indicates the improper usage of a file.

device-error : EXCEPTION RENAMES io exceptions.deviceerror;
-- Indicates that a device driver program has
-- failed for one reason or another.

enderror : EXCEPTION RENAMES io-exceptions.enderror;
-- Indicates that an attempt was made to read
-- past the end of the file.

dataerror : EXCEPTION RENAMES io-exceptions.data_error;
-- Indicates that an attempt was made, to read
-- from a file into a buffer or write from a
-- buffer into a file, data of the wrong type.

PRAGMA PAGE; -- In Package DIRECT_10 Specification

-- The following are the private implementation-dependent
-- declarations.

PRIVATE

TYPE file_type IS
-- Contains all the needed information on the file and its
-- properties of concern to the I/O operation.
RECORD

realfile_ -ype : o_support.file type;
-- Contains the needed information for
-- direct reading and/or writing of the

-- data.

END RECORD;

END DIRECT_10;

F-60

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

PACKAGE SEQUENTIALIO

-- C 1987 United States Government as represented by
-- the Secretary of the Navy. ALL RIGHTS RESERVED.

-- (The U.S. Government possesses the unlimited rights
-- throughout the world for government purposes to
-- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
-- computer firmware contained herein; and to authorize
-- others to do so.)

-- Revision History:

-- 3 Feb 1987 JGR
-- Package Specification Created.

WITH IOEXCEPTIONS, IOSUPPORT;

GENERIC

TYPE elementtype IS PRIVATE;
-- The type of the element instantiated on the call to any

-- of the subprograms of this package. It is determined
-- by the type of the element being used in the invoking

-- subprogram.

PACKAGE SEQUENTIALIO IS

PRAGMA PAGE; -- In Package SEQUENTIAL 10 Specification

-- JUSTIFICATION:

-- SEQUENTIAL 10 contains the subprograms necessary f-: the
-- user to perform sequential access I/O operations (as

described in Section 14.2.1 and Section 14.2.3 of
(ANSI/MIL-STD-1815]). SEQUENTIAL_10 is primarily an

-- interface, between the User-Written_Ada_Program and the
-- package IO_SUPPORT which does the actual work for
-- SEQUENTIAL IO operations. In serving as this interface,
-- SEQUENTIAL_IO contains only the calls necessary to i:voke
-- the subprograms of 10_SUPPORT. SEQUENTIAL_10 is a generic
-- package thus enabling it to work for all instantiated types.

-- SEQUENTIAL_ID also will make use of the Ada feature to
-- overload subprogram names. In the cases where overloading
-- I is used, each subprogram will be listed separately in its
-- entirety.

F-61

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- DATA:

--I Type declarations for the limited private type FILE TYPE
-- and the type FILEMODE are declared in this package
__ specification.

TYPE filetype IS LIMITED PRIVATE;
-- Forward declaration. The formal declaration
-- will appear later.

TYPE file mode IS
-- Allowable modes for sequential files.
(in_file, -_ Input mode (read only).
out file -- Output mode (write only).

-- I INITIALIZATION:

-- I None.

-- I CREATED TASKS:

-- I None.

--I SUBPROGRAMS AND TASKS:

PROCEDURE CREATE
-- will create a file for sequential access.

(file : IN OUT filetype;
-- Points to the block containing the file

-- information.

mode : IN file-mode := out-file;
-- Specifies that the file 's to be written to.

name : IN STRING := ..;
-- The name of the external file.

form : IN STRING := "-
-- Used by the system for file characteristics.

PROCEDURE OPEN
-- will open a file for sequential access.

(file : IN OUT filetype;
-- Points to the block containing the
-- file information.

F-62

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

mode : IN file-mode;
-- Specifies whether the file is to be read from or

-- written to.

name : IN STRING;
-- The name of the external file.

form : IN STRING := "'
-- Used by the system for file characteristics.

PROCEDURE CLOSE
-- will close a sequential access file.

(file : IN OUT filetype
-- Points to the block containing the

-- file information.

PROCEDURE DELETE
-- will delete a sequential access file.

(file : IN OUT filetype
-- Points to the block containing the
-- file information.

PROCEDURE RESET
-- will reset a sequential access file and chanae its mode

-- to the requested mode.

(file 1N OUT file _tvpe;
-- Points to the block ccntaininc the

-- file information.

mode IN file-mode
-- Specifies whether the file is to be read from or
-- written to.

PROCEDURE RESET
-- will reset a sequential access file but will not change

-- its mode.

(file : IN OUT file type
-- Points to the block containing the

-- file information.

F-63
I

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

FUNCTION MODE
-- gives the mode of the sequential access file.

(file : IN filetype
-- Points to the block containing the
-- file information.

) RETURN filemode;
-- Present mode of the given file.

FUNCTION NAME
-- gives the external name of the sequential access file.

(file : IN filetype
-- Points to the block containing the
-- file information.

RETURN STRING;
-- Full name of the external file.

FUNCTION FORM
-- gives the form of the sequential access file.

(file : IN filetype
-- Points to the block containing the
-- file information.

) RETURN STRING;
-- Form (system file characteristics) of the
-- given file.

FUNCTION IS OPEN
-- indicates whether the sequential access file is open.

(file : IN file type
-- Points to the block containing the
-- file information.

RETURN BOOLEAN;
-- Whether or not the file is open.

PROCEDURE READ
-- will read from a sequential access file.

(file : IN file type;
-- Points to the block containing the
-- file information.

item : OUT element_type
-- Holds the data being read.

PROCEDURE WRITE

F-64

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- will write to a sequential access file.
(file : IN file type;

-- Points to the block containing the

-- file information.

item : IN element type
-- Holds the data to be written.

FUNCTION ENDOFFILE
-- indicates whether the end of the sequential access file
-- has been reached.

(file : IN filetype
-- Points to the block containing the

-- file information.

RETURN BOOLEAN;
-- Result of the end of file test.

PRAGMA PAGE; -- In Package SEQUENTIAL IO Specification

-- The following are the I/O-specific Ada exceptions.

status-error : EXCEPTION RENAMES io-exception.statuserror;
-- Indicates that the file is not properly set
-- for the requested operation.

modeerror : EXCEPTION RENAMES io-exceptions.modeerror;
-- Indicates that the file was not in the proper
-- mode for an attempted read or write operation.

name_error : EXCEPTION RENAMES io-exceptions.nameerror;
-- Indicates that the syntax of the name is not
-- valid or that the name has already been used.

useerror : EXCEPTION RENAMES io_exceptions.use error;
-- indicates the improper usage of a file.

deviceerror : EXCEPTION RENAMES io-exceptions.deviceerror;
-- Indicates that a device driver program has
-- failed for one reason or another.

end-error : EXCEPTION RENAMES io-exceptions.enderror;
-- Indicates that an attempt was made to read
-- past the end of the file.

dataerror : EXCEPTION RENAMES io-exceptions.dataerror;
-- Indicates that an attempt was made, to read
-- from a file into a buffer or write from a
-- buffer into a file, data of the wrong type.

PRAGMA PAGE; -- In Package SEQUENTIALIO Specification

F-65

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- The following is the private implementation-dependent
-- declaration.

PRIVATE

TYPE file_type IS
-- Contains all the needed information on the file and its
-- properties of concern to the I/O operation.
RECORD

realfile type iosupport.file type;
-- Contains the needed information for

-- sequential reading and/or writing of

-- the data.

END RECORD;

END SEQUENTIAL_10;

F-66

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

*t***********.****~~t*tQ*Q************,********* * ********O~t~

PACKAGE IODEFS

-- C 1987 United States Government as represented
-- by the Secretary of the Navy. ALL RIGHTS RESERVED.

-- (The U.S. Government possesses the unlimited rights
-- throughout the world for government purposes to
-- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
-- computer firmware contained herein; and to authorize
-- others to do so

-- Revision History:

-- 3 Feb 1987 JGR
-- Package Specification Created.

WITH SYSTEM;

PACKAGE IO DEFS IS

PRAGMA PAGE; -- In Package IO_DEFS Specification

-- JUSTIFICATION:

-- 10_DEFS contains the implementation-dependent object and
-- type declarations used in I/O_Management/RTLib. Hence,
-- IODEFS allows the I/O_Management/RTLib packages to stay
-- I implementation-independent.

DATA:

-- The data in this package will consists of CONSTANTS,

-- TYPES and SUBTYPES. The data will define the
-- I implementation-dependent objects and types, such as

file lengths, data size, transfer limits, buffer limits,
-- file modes and accessibility. The peripheral devices
-- supported will also be contained in an enumerication type.

io device mapsize : CONSTANT := 32;

-- I/O_DeviceMap array size.

data maxln k : CONSTANT := 2147_483_647:

-- The largest positive integer on the

-- AN/UYK(43).

file minln k : CONSTANT := -2_147_483_647;

-- The smallest negative integer on
-- the AN/UYK(43).

F-67

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

filemaxln_k : CONSTANT := 2147483_647;
-- The largest positive integer on the

-- AN/UYK(43).

extname_length : CONSTANT := 20;
-- The limit of the string length for
-- holding an external file name.

max formlength : CONSTANT := 20;
-- The limit of the form length for
-- holding the file creation form parameter.

buffer data limit : CONSTANT := 256*4;
-- This is the maximum amount of data to
-- be put into a text data buffer to hand to

-- the Ada/L device drivers to transfer.

SUBTYPE channelrange_int IS INTEGER
RANGE 0..63;

-- This defines the allowable range
-- of values used in the determination

-- of which I/O channel is to be
-- accessed.

SUBTYPE unitrange int IS INTEGER
RANGE 0..9;

-- This defines the allowable range

-- of values used in the determination
-- of which unit on a device is to
-- be used.

SUBTYPE datalength int IS INTEGER
RANGE 0..data maxln k;
-- The allowable range of maximum

-- values for a file record element.
-- Also the last position in all buffers,

-- lines, columns, and pages, within
-- package TEXTIO. Zero here
-- indicates the special case that

-- the item being indexed is empty.

SUBTYPE filelengthint 1S INTEGER
RANGE 0..file maxln k;
-- The allowable range of maximum
-- values for an index used to mark

-- the position in a file. Zero
-- here indicates the special case
-- that the item being indexed is

-- empty.

SUBTYPE device range int IS INTEGER
RANGE l..io defs.iodevicemapsize;
-- Type for I/O_DeviceMap index

F-68

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- (device_id).

SUBTYPE filenamestr IS STRING(l..io defs.extnamelength);
-- The external name of a file.

SUBTYPE formstr IS STRING(l..iodefs.maxformlength);
-- The form specified at file creation.

blank filename : CONSTANT filenamestr := (OTHERS => ' ');
-- A blank file name used for initialization.

SUBTYPE device-mnemonicstype IS STRING(l..2);
-- A two character device uinemonic.

TYPE statustype IS
-- A flag used for device and channel status.
(up, -- used to set status to up.
down, -- used to set status to down.

none -- used when no secondary channel

-- is supplied

TYPE channel_typeenu IS
-- The allowable channel types.

(computer device_16, -- computer to device,

-- 16 data bits.
computercomputer_16, -- computer to computer,

-- 16 data bits.

computer device_32, -- computer to device,

-- 32 data bits.
computercomputer_32 -- computer to computer,

-- 32 datd bits.

TYPE io mode enu IS
-- Defines the type of i/O mode for the file referenced.
(iomin, -- Read mode, an input operation.

iom out, -- Write mode, an output operation.

iom inout -- Read and write mode, :n input or

-- output operation.

TYPE accessibilityenu IS

-- Defines a corresponding value for the allowable types of

-- I/O access. These values are of particular importance to

-- the device drivers to indicate what type of read/write

-- operations will be expected of any one driver.
(asequential, -- Read/Write access will be

-- sequential.

a_direct, -- Read/Write access will be
-- direct.

a_both -- Read/Write access will be

-- sequential or direct.

F-69

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

TYPE fileclass enu IS
-- Defines the allowable predefined types of alpha-numeric
-- contents for a file in the Ada/L I/O.

(fc data, -- The file contents may be data
-- only.

fc text -- The file contents may be text

-- only.

TYPE io resultenu IS
-- Defines the status of the requested I/O operation
-- immediately following its return. The variable, local to

-- the subprogram that requested the I/O operation (the

-- invoking subprogram), of this type should be checked
-- directly after the return from the I/O operation (the
-- invoked subprogram) for its I/O result enumeration status.
-- Hence, this will allow the raising of exceptions at the

-- needed points in the execution.
(iorok, -- I/O request executed

-- satisfactorily.
ior end info, -- I/O request reached the

-- end of file.
ioraccess err, -- I/O request made an

-- invalid access.
iornameerr, -- I/O request had a name

-- syntax error.
iordeviceerr, -- I/O request had a

-- system malfunction.
iorstorageerr, -- I/O request accessed

-- storage wrong.
iordataerr, -- IO request contained

-- invalid data.
ior operation_err, -- I/O request operation

-- failed.

iornode exists, -- I/O request reached

-- a valid node.
iornodedoesntexist, -- I/O recuest reached

-- an invalid node.
iordefault chosen -- I/O request using the

-- default device.

TYPE peripheral_deviceenu IS
-- Used to specify which device the external file is on.
-- NOTE_1: The enumeration values "user-device_?" are for

-- user written and added device driver tasks. The
-- current design in the Ada/L I/O allows for the

-- addition of six device driver tasks.

(usq69_device, -- Specifies the USQ-69 display

-- terminal.

uyh3 device, -- Specifies the UYH-3 disk drive.
rd358_device, -- Specifies the RD-358 tape drive.

milstdl397_interface, -- Specifies a MilStd-1397A computer

-- interface.
milstdl553 interface, -- Specifies a MilStd-1553B computer

F-70

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- interface.

userdevice_a, -- User-defined device type A.

userdeviceb, -- User-defined device type B.
userdevicec, -- User-defined device type C.
userdevice_d, -- User-defined device type D.
userdevicee, -- User-defined device type E.
userdevicef, -- User-defined device type F.
user_deviceg, -- User-defined device type G.

userdeviceh, -- User-defined device type H.
userdevicei, -- User-defined device type I.
user_devicej, -- User-defined device type J.

userdevice_k, -- User-defined device type K.
userdevice_1, -- User-defined device type L.
user_devicem, -- User-defined device type M.
userdevicen, -- User-defined device type N.
userdeviceo, -- User-defined device type 0.
user_devicep -- User-defined device type P.

TYPE io operationsenu IS
-- Identifies the different I/O operations supported by the
-- Ada/L I/O. These operations are an intricate part of the
-- FileInfoBlock used by the SystemI/O level code.
-- IOMANAGEMENT/RTLIB layers FILE_10 and PHYSICAL 10
-- will make explicit use of these codes.

(createrequest, -- Create a new external file.
openrequest, -- Open an already existing file.
closerequest, -- Close the specified file.

delete_request, -- Delete the specified file.
read request, -- Read a record from the specified

-- file.
write_request, -- Write a record to the specified

-- file.
setindexrequest, -- Set a specified position in the

-- file.
sizerequest, -- Determines the number of records

-- in the file.
reset_request, -- Reset the specified file.

eofrequest -- Determines the end of file

-- boolean.

TYPE io request_block IS
-- This structure defines the I/O Request_Block used by the
-- device drivers to service all I/O requests. The data,
-- discriminanted by the peripheral type, contained in this
-- record is the information required for the proper
-- communication between FILEIO and PHYSICALIO.
RECORD

functionrequest : INTEGER;
-- The device specific function request.

-- Each device driver will interpret
-- the contents of this integer by

F-71

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- associating it with an enumeration
-- type which is internal to the device

driver task body.

device type : io-defs.peripheral-deviceenu;

-- Indicates the device type
-- that the io request is being
-- directed to.

device id : iodefs.device_range_int;
-- Identifies the index into the
-- I/O_Device Map.

unit number : io defs.unit range int;
-- Indicates the specific unit number

-- to use on the peripheral devices.

datalocation : system.address;

-- Indicates the address of the

-- data buffer.

datalength : iodefs.data-lengthint;

-- Indicates the number of words
-- in data buffer.

status : io defs.io result enu;

-- Indicates the resulting status of

-- I/O operation.

ei word : INTEGER;
-- The returned external interrupt
-- word.

fillerl,

filler2,
filler3,

filler4,
filler5 INTEGER;

-- Used to pass device specific info,
-- the contents will very by device

-- type.

-- NCTE: For DISKIO these fillers are

-- used as specified below:
-- Fillerl disk_cylinder,
-- Filler2 : disksector,

-- Filler3 : disk head,
-- Filler4/5 := not used.

END RECORD;

TYPE iorbaccess IS ACCESS iorequest_block;
-- Provides access for allocating an 10_RequestBlock.

-- I INITIALIZATION:

F-72

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- I All constant data will be initialized to an initial

-- I value representing a implementation-dependent fixed value.

-- CREATED TASKS:
-- I

None.

-- I SUBPROGRAMS AND TASKS:
-- J1
-- I J None.

END IODEFS;

F-73

APPENDIX F OF THE ADA LRN FOR THE ADAUYK43 TOOLSET.

PACKAGE STANDARD

The package STANDARD contains the following definitions in
addition to those specified in Appendix C of ANSI/MIL-STD-1815A.

-- c 1987 United States Government as represented by
-- the Secretary of Navy. ALL RIGHTS RESERVED.

-- (The U.S. Government possesses the unlimited rights
-- throughout the world for Government purposes to
-- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
-- computer firmware contained herein; and to authorize
-- others to do so.)
-- REVISION HISTORY:

-- 10 Mar 1987 TCJ
-- Coded from PDL

PACKAGE STANDARD IS
- JUSTIFICATION:

STANDARD contains the definitions for the pre-defined
-- types and constants as defined in Appendix C of
-- ANSI/MIL-STD-1815A.

-- Assumptions:

-- I STANDARD is targeted for Ada/L(43).
-- TYPES and DATA:

-- I See below.
TYPE boolean IS (false, true);

-- FOR boolean'SIZE USE 1;
-- The predefined relational operators for this type are as
-- follows:
-- FUNCTION "=" (left, right : boolean) RETURN boolean;
-- FUNCTION "/" (left, right boolean) RETURN boolean;

-- FUNCTION "<" (left, right : boolean) RETURN boolean;
-- FUNCTION "<=' (left, right : boolean) RETURN boolean;
-- FUNCTION ">" (left, right : boolean) RETURN boolean;
-- FUNCTION ">=' (left, right : boolean) RETURN boolean;
-- The predefined logical operators and the predefined logical
-- negation operators are as follows:
-- FUNCTION "AND" (left, right : boolean) RETURN boolean;
-- FUNCTION "OR" (left, right : boolean) RETURN boolean;
-- FUNCTION "XOR" (left, right : boolean) RETURN boolean;
-- FUNCTION "NOT" (right : boolean) RETURN boolean;
-- The type universalinteger is predefined.

TYPE integer IS RANGE -2_147_483_647 .. 2_147_483_647;
-- -(2"'31 - 1) .. (2-*31 - 1)

FOR integer'SIZE USE 32;
-- The predefined operators for this type are as follows:
-- FUNCTION "= (left, right : integer) RETURN boolean;
-- FUNCTION "/=" (left, right : integer) RETURN boolean;

F-74

APPENDIX F OF THE ADA LRN FOR THE ADAUYR43 TOOLSET.

-- FUNCTION "" (left, right : integer) RETURN boolean;
FUNCTION "<=" (left, right : integer) RETURN boolean;

-- FUNCTION ">" (left, right : integer) RETURN boolean;
FUNCTION ">=" (left, right : integer) RETURN boolean;

-- FUNCTION "+" (right : integer) RETURN integer;
-- FUNCTION "-" (right : integer) RETURN integer;
-- FUNCTION "abs" (right : integer) RETURN integer;
-- FUNCTION "+" (left, right : integer) RETURN integer;
-- FUNCTION "-" (left, right integer) RETURN integer;
-- FUNCTION "*" (left, right : integer) RETURN integer;
-- FUNCTION "/" (left, right integer) RETURN integer;
-- FUNCTION "rem" (left, right : integer) RETURN integer;
-- FUNCTION "mod" (left, right : integer) RETURN integer;

-- FUNCTION "**" (left : integer; right : integer) RETURN
-- integer;

TYPE longinteger IS RANGE
-9_223_372_036_854_775_807 .. 9_223_372_036_854_775_807;

-- The predefined operators for this type are as follows:
FUNCTION "=" (left, right : long integer) RETURN boolean;

-- FUNCTION /=" (left, right : long integer) RETURN boolean;
-- FUNCTION "<" (left, right : long integer) RETURN boolean;
-- FUNCTION "<=" (left, right : long integer) RETURN boolean;
-- FUNCTION ">' (left, right : long integer) RETURN boolean;
-- FUNCTION ">=" (left, right : long integer) RETURN

-- boolean;
-- FUNCTION "+" (right : longinteger) RETURN long integer;
-- FUNCTION "-" (right : longinteger) RETURN long integer;
-- FUNCTION "abs" (right : longinteger) RETURN long integer;
-- FUNCTION "+" (left, right : longinteger) RETURN

-- longinteger;
-- FUNCTION "-" (left, right : longinteger) RETURN

-- longinteger;
-- FUNCTION "i" (left, right : longinteger) RETURN
-- longinteger;
-- FUNCTION "/" (left, right : long_integer) RETURN

longinteger;
-- FUNCTION "rem" (left, right : longinteger) RETURN
-- longinteger;
-- FUNCTION "mod" (left, right : longinteger) RETURN
-- long integer;
-- FUNCTION "**" (left long_integer; right : integer) RETURN
-- longinteger;

TYPE float IS DIGITS 6 RANGE
-(16#0.FFFFFF#E63)
(16#0.FFFFFF#E63);

-- The predefined operators for this type are as follows:
-- FUNCTION '" (left, right : float) RETURN boolean:
-- FUNCTION "/:" (left, right : float) RETURN boolean:
-- FUNCTION "<" (left, right : float) RETURN boolean;
-- FUNCTION "<=" (left, right : float) RETURN boolean:
-- FUNCTION "'" (left, right : float) RETURN boolean;
-- FUNCTION "=" (left, right : float) RETURN boolean;
-- FUNCTION " " (right : float) RETURN float;
-- FUNCTION "-" (right : float) RETURN float;
-- FUNCTION "abs" (right : float) RETURN float;

F-75

APPENDIX F OF THE ADA LRM FOR TE ADAUYK43 TOOLSET.

-- FUNCTION 0+" (left, right : float) RETURN float;
-- FUNCTION 0-" (left, right % float) RETURN float;
-- FUNCTION * (left, right : float) RETURN float;
-- FUNCTION W/" (left, right : float) RETURN float;
-- FUNCTION -s'" (left : float; right : integer) RETURN float;

TYPE long float IS DIGITS 15 RANGE

-(16#0.FF FFFF FFFF FFFF#E63)
(16#0.FF FFFF FFFF FFFFOE63);

-- The predefined operators for this type are as follows:
-- FUNCTION "=" (left, right : long float) RETURN boolean;
-- FUNCTION '/= (left, right : long float) RETURN boolean;
-- FUNCTION "<" (left, right : long float) RETURN boolean;

FUNCTION "<' (left, right : long float) RETURN boolean;
-- FUNCTION ">" (left, right : long float) RETURN boolean;
-- FUNCTION ">s" (left, right z longfloat) RETURN boolean;
-- FUNCTION " (right : long float) RETURN longfloat;
-- FUNCTION -" (right : long float) RETURN long_float;
-- FUNCTION "abs" (right : longfloat) RETURN long_float;
-- FUNCTION "+" (left, right : longfloat) RETURN long_float;
-- FUNCTION "-" (left, right : longfloat) RETURN long_float;

-- FUNCTION "'" (left, right : long float) RETURN long_float;
-- FUNCTION "/" (left, right : long float) RETURN longfloat;
-- FUNCTION "*" (left : long_float; right : integer) RETURN
-- longfloat;
-- In addition, the following operators are predefined for universal
-- types:
-- FUNCTION "*" (left universal_integer;
-- right universal_real)

-- RETURN universal real;

-- FUNCTION "" (left universalreal;

-- right universalinteger)
-- RETURN universalreal;

-- FUNCTION "/" (left universalreal;

right universal_integer)
-- RETURN universal-real;
-- The type universal-fixed is predeflned. The cnly cperators

-- declared for this type are:

-- FUNCTION "*" (left: any fixed_point type;

-- right : anyfixed_point type)

-- RETURN universal fixed;
-- FUNCTION "/" (left anyfixedypoint type;
-- right anyfixedpointtype)

-- RETURN universal-fixed;

-- The following characters form the standard ASCII set.

TYPE character IS
(-- 32 control characters are defined here --

* , If, $me, '|', 0$0, '%10 lot,'
• • , 0 , , , - , ,

, ', 2', 31, 041, 5 , 6l, 171,

F-76

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

see , 494, 1:0, *;1, ',1°=0, 1>0, 0?0,

I@ 'A', 'B', 'C', 'D', 'E', 'F', 'G,
H', 'I', 'J', K', 'L, 'M, 'N', '0',

IP, 006, R', 'S', 'T', $Us, V , 'W',

°X, 'y b, Z', op, \ , I, f1, 1 ,

#a', 'a', 'b , 'c', #d', e', 'n', 'g',

'p', q', 'r', 's', 't, 'u', 'v' w''x IBy $, z , I ', 1I' '] , " ', @I

FOR character USE -- 128 ASCII character set without holes

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99,

100,101,102,103,104,105,106,107,108,109,
110,111,112,113,114,115,116,117,118,119,
120,121,122,123,124,125,126,127);

-- FOR character'SIZE USE 8;

-- The predefined operators for the type CHARACTER are the same
-- as for any enumeration type.

PACKAGE ASCII IS

-- Control characters:

nul : CONSTANT character =

soh : CONSTANT character
stx : CONSTANT cnaracter :=

etx : CONSTANT character ::
eot : CONSTANT character :
enq : CONSTANT character
ack : CONSTANT character :
bel : CONSTANT character :=

bs : CONSTANT character :
ht : CONSTANT character :
If : CONSTANT character : ;

vt : CONSTANT character : '

ff : CONSTANT character : '

cr : CONSTANT character : '

so : CONSTANT character :
si : CONSTANT character : '

dle : CONSTANT character :
dcl : CONSTANT character :=
dc2 : CONSTANT character :=

F-77

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

dc3 : CONSTANT character :=
dc4 : CONSTANT character :=
nak ; CONSTANT character :-
syn : CONSTANT character :-
etb : CONSTANT character :=
can : CONSTANT character :
em : CONSTANT character : '

sub : CONSTANT character : ;

esc : CONSTANT character :
fs : CONSTANT character := '

gs : CONSTANT character :
rs : CONSTANT character :=
us : CONSTANT character : ;

del : CONSTANT character ::

-- Other characters:

exciam : CONSTANT character :
sharp : CONSTANT character : ':
dollar : CONSTANT character :
query : CONSTANT character
atsign : CONSTANT character :
1_bracket : CONSTANT character :=
backslash : CONSTANT character :
r_bracket : CONSTANT character :]I;
circumflex : CONSTANT character :
grave : CONSTANT character
1_brace : CONSTANT character : t;
bar : CONSTANT character : 1';
r7brace : CONSTANT character : 1';
tilde : CONSTANT character

-- Lower case letters:

Ic a : CONSTANT character 'a';
ic b : CONSTANT character :=b;
lc c : CONSTANT character : c';
ic d : CONSTANT character : d-;
lc e : CONSTANT character := e;

lc f : CONSTANT character If,;
ic-g : CONSTANT character :1 g;
Ic h : CONSTANT character :='h;
lc i : CONSTANT character :
ic_j : CONSTANT character :
lc k : CONSTANT character := '
lc 1 : CONSTANT character : '1;
Ic m : CONSTANT character :=m
Ic n : CONSTANT character : n';
ic o : CONSTANT character : 'o;

lcp : CONSTANT character :=lp
lc-q : CONSTANT character :'q
1c r : CONSTANT character :'.r*
ics : CONSTANT character :
lc t : CONSTANT character : 't'•
lc u : CONSTANT character : u';

F-78

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

ic v : CONSTANT character =v';
lc w : CONSTANT character :=w';
ic_x CONSTANT character : 'x';
icy CONSTANT character : y°;
lc_z CONSTANT character := ;

END ASCII;
-- Predefined subtypes:

SUBTYPE natural IS integer RANGE 0 integer'LAST;
SUBTYPE positive IS integer RANGE 1 .. integer'LAST;

-- Predefined string type:

TYPE string IS ARRAY (positive RANGE <>) OF character;

PRAGMA PACK(string);
-- The predefined operators for this type are as follows:

-- FUNCTION "=" (left, right : string) RETURN boolean;

-- FUNCTION "/=" (left, right string) RETURN boolean;

-- FUNCTION "<" (left, right : string) RETURN boolean;
-- FUNCTION "<" (left, right string) RETURN boolean;
-- FUNCTION ")" (left, right : string) RETURN boolean;

-- FUNCTION ">= (left, right : string) RETURN boolean;

-- FUNCTION "L" (left : string; right : string)
-- RETURN boolean;

-- FUNCTION "&" (left : character; right : string)
-- RETURN boolean;
-- FUNCTION "&" (left : string; right : character)

-- RETURN boolean;

-- FUNCTION "&" (left : character; right : character)
-- RETURN boolean;

TYPE duration IS DELTA 2.0 **(-14) RANGE -131_071.0..131_071.0;
.. (2"*17 - 1)

-- The predefined operators for the type DURATION are the same
-- as for any fixed point type.

-- The predefined exceptions:

constraint error : exception;
numeric error : exception;
program-error : exception;
storageerror : exception;
tasking error : exception;

END STANDARD;

F-79

APPMIX C

TEST PARMIR

Certain tests in the ACVC make use of inplementation-depexent values,
such as the maximu= length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

SBIG IDl <1..119 => 'W, 120 => 'I'>
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID2 <1..119 => 'A', 120 => '2'>
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 <1..59 => 'A', 60 => '3',
Identifier the size of the 61..120 => 'A'>
maxiiam input line length with
varying middle character.

SBIG ID4 <1..59 => 'A', 60 => '4',
Identifier the size of the 61..120 => 'A'>
maximnm input line length with
varying middle character.

$BIG INT LIT <1..117 => '0', 118.-120 =>
An integer literal of value 298 '298'>
with enough leading zeroes so
that it is the size of the
maxi m line lexnth.

$BIG REAL LIT <1..115 => '0', 116.-120 =>
A universal real literal of '690.0'>
value 690.0 with enough leading
zeroes to be the size of the
maxi m line length.

C-1

$BIG SIRING1 <1 => '"' 2..61 => 'A', 62 =>
A string literal which when '"'>

catenated with BIG SIRING2
yields the iage of BIG_IDi.

$BIG_SIING2 <1 => "" 2..60 => 'A', 61 =>
A string literal which when '1', 62 => 1"">
catenated to the end of
BIG STI1mfl yields the image of
BIGIDi.

$BLANI(S <I..100 => ''
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 2147483647
A universal integer literal
whose value is
TEXT I0. aCUNT' IAsT.

$FIED_IAST 2143483647
A universal integer
literal whose value is
TEXT I0. FIELD' LAST.

$FIIE_NE _m BAD cARS BA-C S i-TOO-ING-A-FILE-
An external -file name that NAME.%!X
either contains invalid
characters or is too long.

SFIE_ NME WM WILD CARD CHAR WLD- R*--A-FIL-
An exera file name that NAME.NAM
either contains a wild card
character or is too long.

$GREATER TlAN -JPAYION 131_071.5
A universal real literal that
lies between DURATION' BASE' LAST
and DURATION'LAST or any value
in the range of XJRATION.

$GREATER_ 1 AN_ IRATION BASE IAST 131_073.0
A universal real literal that is
greater than DURATION'BASE'ILAST.

$IL ALEXTEAL_FILE_ NAME1 BAD R @ -TO-LONG-A-FIIE-
An external file name which NAME.-!
contains invalid characters.

C-2

An external file rm whidh
is too long.

$$Rnm _FnT -2147483647
A universal integer literal
whose value is flhI0'FrT.

$INrTELAST 2147483647
A universal integer literal
whose value is flIEGEILAST.

$JJ1lV _ LST PUIS 1 2147483648
A niversal -integer literal
whose value is flhGE' LAST + 1.

SLESS_T N DURATION -131_071.5
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATICN' FJTR or any value
in the range of DURATION.

STSS_ THAN DURATION BASEFRT -131_073.0
A universal real literal that is
less than DURATIONI' BASE' FIRST.

SMAX DIGITS 6
Maximum digits supported for
floating-point types.

$MAXIN LEN 120
Racm iupt line lexith
permitted by the iplaeentation.

$MAX_ IT 9223372036854775807
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAXINT_PLUS 1 9223372036854775808
A universal integer literal
whose value is SYSiEm.mAX INT+1.

$MAX LINT BASEDLITERAL <1..2 => '2:', 3.117 => '0,
A -universal integer based 118..20 => '11:1>
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX-INf IN
long.

C-3

$MAXLENM-,R_.SEDLTTnRAL <1..3 => 116:1, 4.-116 > 01,
A universal real based literal 117..120 => 'F.E: '>
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLfl long.

$4AX) _SITRqLITRAI <1 => "'1, 2..119 => 'A', 120 =>
A string literal of size '" 1>
MAXINLEN, including the quote
dctcers.-

$IN_INr -9223372036854775807
A universal integer literal
whose value is SYs.IN_ INT.

$NAME No_Suc!k_Type
A name of a predefined numeric
type other than FLOAT, DF ,
SHOT FNT, SHORT ThTD2,
t_FIAT, or LtWG_INGER.

$NEC BASDIN W6r~±rz kU

A basid integer literal whose
highest order nonzexo bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-4

APPINDIX D

WIRAM TESTS

Some tests are withdrawn fraum the ACVC because they do not conform to
the Ada Standard. The following 28 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF) ;"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CDNSTRAINTERROR.

C35502P: Equality operators in lines 62 & 69 should be inequality
operators.

A35902C: Line 17's assignment of the cnmimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINTERROR, for that value lies outside of the actual
rare of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly
raises ONSITAINT_EY1WR, because its upper bound exzeeds that
of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINTERROR when its campatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC ERROR or CONSTRAIN ERROR for reasons not
anticipated by the test.

C35A03E, These tests assume that attribute 'MANTISSA returns 0 when
& R: applied to a fixed-point type with a null range, but the Ada

Standard doesn't support this assumption.

C37213H: The subtype declaration of SC0NS in line 100 is wrongly
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 ',rongly raises CONSTRAINTERROR.

D-1

C37215C, Various dUscriminant contraints are wr gly expected
E, G, H: to be I:tible with type ONS.

C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINT ERROR.

C41402A: 'STORAESIZE is wrongly applied to an object of an access
type.

C45332A: The test expects that either an expression in line 52 will
raise an exception or else MAlINE_ ovm is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the cperands, and MAcHNlE_OVERFiDwS may still be TRUE.

C45614C: REPORT.IDENTINT has an argument of the wrong type

E66001D: This test wrongly allows either the acceptance or rejection of
a parameterless function with the same identifier as an
enumeration literal; the function must be rejected (see
cmmentary AI-00330).

A74106C, A bound specified in a fixed-point subtype declaration
C85018B, lies outside of that calculated for the base type, raising
C87B04B, CONSRAINT ERR. Errors of this sort occur re lines 37 & 59,
CC131B: 142 & 143, 16 & 48, and 252 & 253 of the four tests,

respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be illegal; they are
legal.

ADlA01A: The declaration of subtype IT3 raises CONSTRAINTERROR for
implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 & 117 contain the wrong
values.

CE3208A: This test expects that an attempt to open the default output
file (after it was closed) with mode IN FILE raises NAME ERR
or USE_E2RR; by Commentary AI-00048, MODEERROR should be
raised.

D-2

